GNU Dico Manual

version 2.10, 4 September 2020

Sergey Poznyakoff.

Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA

Copyright (© 2008-2020 Sergey Poznyakoff

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover, and no Back-Cover texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Dédié a la mémoire de Jacques Brel.

Short Contents

Preface e 1
L OVEIVIEW .« oot 3
2 Introduction to GNU Dico........ 5
3 Building the Package 7
4 Thedicod daemon.ouuuiiiiiii ... 9
5 Modules. e 43
6 Dico Module Interface 71
7 Dico —aclient program.............. 81
8 GCIDER ... e 99
9 HowtoReportaBug........... 101
A Available Strategies i 103
B Dictionary Server Protocol.......... 105
C Time and Date Formats............. 113
D The Libdico Libraryo 117
E GNU Free Documentation License...................... 133

Concept Indexo 143

iii

Table of Contents

Preface 1
1 Overview i 3
2 Introduction to GNU Dico..................... 5
3 Building the Package........................... 7
3.1 Default Preprocessor...........couiiiiiiiiiiiiiiiii i 7
3.2 Default Servero 7
3.3 Guile SUPPOIt. ..t e 8
3.4 Python Support....... ..o 8
3.5 Other Configure Settings....... ..., 8

4 The dicod daemon. 9
4.1 Daemon Operation Mode...............c ... 9
4.2 Inetd Operation Mode........ ..., 9
4.3 Configurationoiiii 10
4.3.1 Configuration File Syntaxo ... 10
4.3.1.1 Commentsuuutii e 10

4.3.1.2 Pragmatic Comments...............cooiiiiiiiii... 10

4.3.1.3 Statements..............iiii 11

4.3.2 Server Settingso 14
4.3.3 Authentication...............ccoiiiiiiiiiiiieiinnann. 16
4.3.3.1 Text Authentication Database....................... 18

4.3.3.2 LDAP Databases.coooiiiiiiiiiiiiiii . 19

4.3.4 SASL Authentication...............cooiiiiiiiiieiii .. 20
4.3.5 Access Control Lists.........ooiiiiiiii i 21

4.3.6 Security Settings 23
4.3.7 Logging and Debuggingo, 24

4.3.8 Access Log. ..o 24
4.3.9 General Settingsoviriiiiii 26
4.3.10 Server Capabilities.........oouiiiiiii e 28
4.3.11 Database Modules and Handlers......................... 28
4.3.12 Databases.t 30
4.3.12.1 Database Visibility it 32

4.3.12.2 Virtual Databases...............ol 33

4.3.13 Strategies and Default Searches 35

4.3 14 TUnING. . ..o 36
4.3.15 Command Aliases. ..., 36

4.3.16 Using Preprocessor to Improve the Configuration. 37

v

GNU Dico Manual

4.4 Dicod Exit Codeso 38
4.5 Dicod Invocation....... 39
4.5.1 Dicod Operation Mode, 39
4.5.2 Informational Options.......... ..., 40
4.5.3 Modifier Options. ..., 40
4.5.4 Preprocessor Control..............cooiiiiiiiiii i, 41
4.5.5 Debugging Options..........cooiiiiiiiii .. 41
Modules. 43
0.1 OUBLADE oottt 43
0.2 DiCLOTg ottt 44
0.3 GCade. . 45
9.3.1 ddxgcide ... 46
D.4 Wordnet ..o 47
D0 GUILE. oot 50
5.5.1 Virtual Functions o i 51
5.5.2 Guile Initialization i 52
5.5.3 Guile APIL. 52
5.5.4 Dico Scheme Primitives, 55
5.5.5 Example Module........ ... i 56
5.6 Python ... 59
5.6.1 Python Dictionary Class 60
5.6.2 Dico Python Primitives i 61
5.6.2.1 The DicoSelectionKey class........................ 62
5.6.2.2 The DicoStrategyclass................. ..ot 62
5.6.3 Python Example......... ... i i 62
D.7 Stratall ... e 66
D 8 SUD ST 66
0.9 WOTd . et 66
.10 Nprefixo 67
5.11 metaphome2............. 67
5.1 P CTE . e 68
D.13 Ldap . oottt 68
B4 DA ottt 68
Dico Module Interface 71
6.1 dico_database_module.............. 71
6.2 Strategies. 74
6.2.1 Search Key Structure............. 75
6.2.2 Strategy Selectors........ ... 76
6.3 OULPUL - ettt 77

6.4 Module Unit Testing, 78

7 Dico — a client program...................... 81
7.1 Single Query Mode.o 81
7.1.1 Dico Command Line Options.....................ooa... 81

7.1.2 DICT URL ... 82

7.2 Interactive Mode....... ..o 83
7.2.1 Server CommandS.ovuuiiiiiiii i 84

7.2.2 Database and Strategyco i, 85

7.2.3 Informational Commands..................ciiiiiiiia. ... 86

7.2.4 History Commands.covviiriieiiiiinenineannn.. 86

T.2.0 Pager. ... 87

7.2.6 Program Settings............ccoieiiiiiiiiiiiiiiiiiiin.. 87

7.2.7 Session Transcript...... ..o .. 88

7.2.8 Other Commandsccoiiiiiiiiiiiiiien. 89

7.2.9 Dico Command Summaryceevueenneenneen... 89

7.3 Initialization File.... 91
T4 Autologin.o 92
7.5 DIiCo INVOCATION . ..ottt et 94

8 GCIDER 99
9 How to ReportaBug........................ 101
Appendix A Available Strategies............. 103
Appendix B Dictionary Server Protocol..... 105
B.1 Initial Reply.....ooii 105
B.2 Standard Commands ...t 105
B.2.1 The DEFINE Commandccooiiiiiin. .. 105

B.2.2 The MATCH Commandccuiiiiiiiiiiina... 106

B.2.3 The SHOW Command............. ... iiiiiiiiin... 107

B.2.4 The OPTION Commandoiiiiiiiaa. ... 108

B.2.5 The AUTH Commandcoviiiiiiiiiiinn.. 109

B.2.6 The CLIENT Commandcooviiiiiiiinn... 109

B.2.7 The STATUS Commandoviiiiiinnnnnnn.... 109

B.2.8 The HELP Commandcoiiiiiiiiiiinn.. 109

B.2.9 The QUIT Command...................coiiiiiinno.... 110

B.3 Extended Commands. ..., 110

Appendix C Time and Date Formats........ 113

vi GNU Dico Manual
Appendix D The Libdico Library 117
D1 Strategies 117
D2 IV . 117
D8 LSt e 118
D.4 Associative lists 120
D.5 Diagnostics Functions ..., 120
D6 Filter ..o 121
DT parseoptoo 122
D.8 stream 123
DO url . 125
DI0 U -8 e 126
D.10.1 Character SiZeS.........oueeuiiiiiiiiiiiieeeeennnnnns 126
D.10.2 TIterating over UTF-8 strings...................oooot.. 126
D.10.3 CONVErsionsSuuttitt it 127
D.10.4 Comparing UTF-8 stringsccoiiiiiiiii.. 128
D.10.5 Character lookups.o, 129
D.10.6 Functions for converting UTF-8 characters............. 130
D.10.7 Additional functions............. 130
DIl util .o 131
D12 Xlab. .o 131

... 133

Preface 1

Preface

A dictionary server is a program that provides dictionary services to other
computers using the client-server model. The dictionary services include
listing the available databases, searching for a specific term in one or more
databases, displaying the definitions found, etc.

GNU Dico is an implementation of dictionary server, which supports
a wide variety of database formats and is easily extensible using several
scripting languages. Apart from the server, the package contains a console
dictionary client and a window-based browser for GCIDE dictionary.

Chapter 1: Overview 3

1 Overview

A dictionary server operates on a set of databases. Each database contains a
set of headwords with corresponding articles, therefore it can be regarded as
a dictionary, in which articles supply definitions (or translations) for head-
words.

The server offers facilities for searching headwords in the databases and
for fetching articles from them.

This chapter provides an overview of the dictionary protocol and defines
basic terms and notions used throughout this manual.

When describing the protocol, the following typographic conventions are
used: the data sent by the client are prefixed with ‘C:’ and the data sent in
response by the server are prefixed with ‘S:’.

Each database has a unique name — a string of characters that serves to
identify this particular database in a set of available databases. Two more
pieces of textual data are associated with a database. The database infor-
mation string (or info, for short), supplies a short description of the data-
base. It is a sentence, tersely describing the database, e.g. ‘English-German
Dictionary’. The database description provides a full description of the
dictionary, with author credits and copyright information. The length of
this description is not limited.

Both pieces of information can be requested by the remote user. The
command SHOW DB lists all available databases along with their descriptions:

C: SHOW DB

S: 110 3 databases present

S: jargon "Jargon File (4.3.1, 29 Jun 2001)"

S: deu-eng "German-English Freedict dictionary"

S: en-pl-naut "English-Polish dictionary of nautical terms"
S: .

S: 250 ok

Each line of output lists a name of the dictionary, and the corresponding
description.

The SHOW INFO command displays full information about a database,
whose name is given as its argument:
: SHOW INFO en-pl-naut
112 information for en-pl-naut
: English-Polish dictionary of nautical terms

Q

: Permission is granted to copy, distribute and/or modify
: this document under the terms of the GNU Free Docu-

: mentation License, Version 1.2 or any later version

: published by the Free Software Foundation; with no

: Invariant Sections, no Front-Cover and Back-Cover Texts

NMunnmunu nNnnl 2

4 GNU Dico Manual

S: 250 ok

A definition for any given headword can be requested using the DEFINE
command. It takes two arguments, the name of the database and the head-
word to look for in that database, e.g.:

DEFINE en-pl-naut sprit

If the headword is found in the database, its definition is displayed, oth-
erwise a diagnostic message is returned, telling that the headword was not
found.

A special mechanism is provided for looking up the headword in a data-
base (or databases). The MATCH command returns headwords that match
a given string (a search key) using a particular strategy. In other words,
a strategy identifies the algorithm for comparing two strings: a headword
and the search key. A strategy is identified by its name. For example, the
strategy ‘exact’ means literal comparison and returns only those headwords
that match the key exactly. The strategy ‘prefix’ matches word prefixes.
These two strategies are always present. Depending on the configuration,
the server may offer other strategies as well. See Appendix A [Available
Strategies], page 103, for a complete list of strategies implemented in GNU
Dico 2.10.

One of the strategies is selected as a default strategy. Usually such strat-
egy tolerates possible typing errors and allows the user to find matching
headwords even if he does not know exactly how the word in question is
spelled. The default strategy is denoted as ‘.’ (a dot).

The MATCH command takes three arguments: the name of the database
to search, the strategy and the search key. For example:

S: MATCH wn prefix sail

C: 152 4 matches found: list follows

C: wn "sail"

C: wn "sail through"

C: wn "sailboat"

C: wn "sailcloth"

C: .

C: 250 0Ok

Two database names are special. The ‘*’ means search in all databases

and return all matches. The ‘!’ means search in all databases until the

match is found in one of them and return only matches from that particular
database.

These are basic facilities provided by the DICT protocol. For a complete
and detailed description of the protocol, see Appendix B [Dictionary Server
Protocol], page 105.

Chapter 2: Introduction to GNU Dico 5

2 Introduction to GNU Dico

GNU Dico is an implementation of DICT dictionary server (described in RFC
2229) and a set of accompanying utilities. The GNU Dico server uses two-
layer model. The protocol layer is responsible for the correct DICT protocol
dialog and is provided by the dicod server binary. The database layer is
responsible for searching and retrieving data from dictionary databases. This
layer is provided by external loadable modules. Thus, Dico does not impose
any specific dictionary database format. A single server can handle databases
in various formats, provided that appropriate modules are available. Several
database modules are shipped with GNU Dico. The following is a short
introductions for some of them. See Chapter 5 [Modules|, page 43, for a
complete list of available modules with detailed descriptions.

dictorg This module provides full support for the format designed by
the DICT development group (http://dict.org). This is a
de facto standard for DICT databases. A number of dictionary
databases in this format are provided by the FreeDict project
(http://freedict.org).

wordnet Support for ‘WordNet’ databases. WordNet is a lexical database
for the English language developed in the Princeton University
and distributed under a BSD style license.

gcide Support for ‘GNU Collaborative International Dictionary
of English’. This dictionary derived from Webster’s Revised
Unabridged Dictionary, supplemented with some of the defini-
tions from WordNet. It was edited by Patrick J. Cassidy, proof-
read and supplemented by volunteers from around the world. It
is available from http://gcide.gnu.org.ua.

guile This module provides an interface to Guile, the GNU’s Ubig-
uitous Intelligent Language for Extensions (http://www.gnu.
org/software/guile) and allows you to write Dico modules in
Scheme programming language.

python This module provides an interface to Python (http://www.
python.org) and can be used to write Dico modules in it.

outline This module handles simple databases in GNU Emacs outline
format. It is designed mostly for test purposes.

This manual describes how to configure and use the Dico dictionary sys-
tem. It also describes the API for writing Dico modules in C, Scheme or
Python.

http://dict.org
http://freedict.org
http://gcide.gnu.org.ua
http://www.gnu.org/software/guile
http://www.gnu.org/software/guile
http://www.python.org
http://www.python.org

Chapter 3: Building the Package 7

3 Building the Package

Building Dico is quite straightforward. You run ./configure, then make,
followed by make install, and you are done.

Actions the configure script performs are controlled by a set of command
line options and variables. Some of these options are generic, i.e. common
for all packages using the GNU autoconf system. For a detailed description
of these option see the INSTALL file shipped with the sources. Yet another
options are specific for Dico. We will describe them in this chapter.

3.1 Default Preprocessor

The runtime configuration system uses m4 to preprocess the configuration file
(see Section 4.3.16 [Preprocessor|, page 37), which makes the configuration
extremely flexible. We recommend to use GNU m4 as a preprocessor!. How-
ever, any other implementation of m4 can be used as well. The configure
script tries to determine full file name of the preprocessor binary and the
necessary command line options. In case it makes a wrong guess, you can
instruct it to use a particular preprocessor by using DEFAULT_PREPROCESSOR
configuration variable. For example, the following configure invocation
instructs it to use /usr/local/bin/gm4:

$./configure DEFAULT_PREPROCESSOR="/usr/local/bin/gm4 -s"

Note the use of the -s preprocessor option. It instructs m4 to produce
line directives which help dicod produce correct diagnostics about eventual
configuration errors. Unless your m4 implementation does not have this
feature, we recommend to always use it in DEFAULT_PREPROCESSOR value.

Finally, if you do not wish to use preprocessor at all, you can disable it
using --without-preprocessor option to configure.

3.2 Default Server

Unless given an explicit dictionary server, the dico client program attempts
to connect to the server ‘dict://dico.gnu.org.ua’. You may change this
default by defining the DEFAULT_DICT_SERVER variable. For example, the
following command line selects ‘dict.org’ as the default server:

$./configure DEFAULT_DICT_SERVER=dict.org

The value of the DEFAULT_DICT_SERVER variable can be either a host-
name or IP address of the server. It can also be followed by a colon and
a port specification, either as a decimal number or as a service name from
/etc/services.

1 http://www.gnu.org/software/mé

http://www.gnu.org/software/m4

8 GNU Dico Manual

3.3 Guile Support

The GNU'’s Ubiquitous Intelligent Language for Extensions, or Guile? can be
used to write database modules for GNU Dico. This requires Guile version
2.2.0 or newer. The configure script will probe for the presence of Guile on
your system and automatically enable its use if its version number is high
enough.

If you do not wish to use Guile, use —-without-guile to disable it.

3.4 Python Support

The support for Python (http://www.python.org) is enabled automatically
if configure detects that Python version 2.5 or later is installed on your
machine.

If you do not wish to use Python, use ——without-python to disable it.

3.5 Other Configure Settings

The dicod daemon uses syslogd for diagnostics. The default syslog facility
can be set using LOG_FACILITY configuration variable. Its allowed arguments
are ‘user’, ‘daemon’, ‘auth’, ‘authpriv’, ‘mail’, ‘cron’, and ‘local0’ through
‘local?7’. Case is not significant. In addition, these words can be prefixed
with ‘log_’.

By default, the ‘daemon’ facility is used.

2 http://www.gnu.org/software/guile.

http://www.python.org
http://www.gnu.org/software/guile

Chapter 4: The dicod daemon. 9

4 The dicod daemon.

The main component of GNU Dico is the dicod daemon. It is responsible for
serving client requests and for coordinating the work of dictionary modules.

There are two operation modes: ‘daemon’ and ‘inetd’.

4.1 Daemon Operation Mode

The ‘daemon’ mode is enabled by mode daemon statement in the configura-
tion file (see [mode statement], page 14). It is also the default mode. In
daemon mode dicod listens for incoming requests on one or several net-
work interfaces. Unless the --foreground option is specified, it detaches
itself from the controlling terminal and switches to background (becomes a
daemon). When an incoming connection arrives, it forks a subprocess for
handling it.

In this mode the following signals cause dicod to terminate: ‘SIGTERM’,
‘SIGQUIT’, and ‘SIGINT’. The ‘SIGHUP’ signal causes the program to restart.
This works only if both the program name and its configuration file name
(if given using --config option) are absolute file names.

Upon receiving ‘SIGHUP’, dicod first verifies if the configuration file does
not contain fatal errors. To do that, the program executes a copy of itself
with the --1int option (see [-lint], page 39) and analyzes its return code.
Only if this check passes, dicod restarts itself. This ensures that the daemon
will not terminate due to unnoticed errors in its configuration file.

Upon receiving ‘SIGTERM’, ‘SIGQUIT’, or ‘SIGINT’, the program stops ac-
cepting incoming requests and sends the ‘SIGTERM’ signal to all active sub-
processes. Then it waits a predefined amount of time for all processes to
terminate (see [shutdown-timeout], page 16). Any subprocesses that do not
terminate after this time are sent the ‘SIGKILL’ signal. Then, the database
modules are unloaded and dicod terminates.

Several command line options are provided that modify the behavior of
dicod in this mode. These options are mainly designed for debugging and
error-hunting purposes.

The --foreground option instructs the server to remain attached to the
controlling terminal and stay in the foreground. It is often used with --
stderr option, which instructs dicod to output all diagnostic to the stan-
dard error output, instead of syslog which is used by default.

4.2 Inetd Operation Mode

In ‘inetd’ operation mode inetd receives requests from standard input and
sends its replies to the standard output. This mode is enabled by mode
inetd statement (see [mode statement|, page 14) in configuration file, or
by the --inetd command line option (see [-inetd], page 39). This mode
is usually used when invoking dicod from inetd.conf file, as in example
below:

10 GNU Dico Manual

dict stream tcp nowait nobody /usr/bin/dicod --inetd

4.3 Configuration

Upon startup, dicod reads its settings and database definitions from a con-
figuration file dicod.conf. By default it is located in $sysconfidr (i.e., in
most cases /usr/local/etc, or /etc), but an alternative location may be
specified using the -—config command line option (see [-config], page 40).

If any errors are encountered in the configuration file, the program reports
them on the standard error and exits with a non-zero status.

To test the configuration file without starting the server, use the --1int
(-t) command line option. It causes dicod to check its configuration file and
exit with status 0 if no errors were detected, and with status 1 otherwise.

Before parsing, the configuration file is preprocessed using m4 (see
Section 4.3.16 [Preprocessor|, page 37). To examine the preprocessed con-
figuration without actually parsing it, use the -E command line option. To
avoid preprocessing it, use the --no-preprocessor option.

The rest of this section describes configuration file syntax in detail. You
can receive a concise summary of all configuration directives any time by
running dicod —-—config-help.

4.3.1 Configuration File Syntax

A dicod configuration consists of statements and comments.

There are three classes of lexical tokens: keywords, values, and separators.
Blanks, tabs, newlines and comments, collectively called white space are
ignored except as they serve to separate tokens. Some white space is required
to separate otherwise adjacent keywords and values.

4.3.1.1 Comments

Comments may appear anywhere where white space may appear in the con-
figuration file. There are two kinds of comments: single-line and multi-line
comments. Single-line comments start with ‘#” or ‘//’ and continue to the
end of the line:

This is a comment

// This too is a comment

Multi-line or C-style comments start with the two characters ‘/*’ (slash,
star) and continue until the first occurrence of ‘*/’ (star, slash).

Multi-line comments cannot be nested.

4.3.1.2 Pragmatic Comments

Pragmatic comments are similar to usual comments, except that they cause
some changes in the way the configuration is parsed. Pragmatic comments
begin with a ‘#’ sign and end with the next physical newline character. As of
GNU Dico version 2.10, the following pragmatic comments are understood:

Chapter 4: The dicod daemon. 11

#include <file>

#include file
Include the contents of the file. If file is an absolute file name,
both forms are equivalent. Otherwise, the form with angle
brackets searches for the file in the include search path, while
the second one looks for it in the current working directory first,
and, if not found there, in the include search path.

The default include search path is:
1. prefix/share/dico/2.10/include

2. prefix/share/dico/include

where prefix is the installation prefix.

New directories can be appended in front of it using -I (--
include-dir) command line option (see [-include-dir|, page 41).

#include_once <file>

#include_once file
Same as #include, except that, if the file has already been in-
cluded, it will not be included again.

#line num

#line num "file"
This line causes dicod to believe, for purposes of error diagnos-
tics, that the line number of the next source line is given by num
and the current input file is named by file. If the latter is absent,
the remembered file name does not change.

num "file"
This is a special form of #1line statement, understood for com-
patibility with the ¢ preprocessor.

In fact, these statements provide a rudimentary preprocessing features.
For more sophisticated ways to modify configuration before parsing, see
Section 4.3.16 [Preprocessor|, page 37.

4.3.1.3 Statements

A simple statement consists of a keyword and a value separated by any
8)

amount of whitespace. It is terminated with a semicolon (‘;’), unless the
value is a here-document (see below), in which case semicolon is optional.
Examples of simple statements:
timing yes;
access-log-file /var/log/access_log;

A keyword begins with a letter and may contain letters, decimal dig-
its, underscores (‘_’) and dashes (‘-’). Examples of keywords are: ‘group’,
‘identity-check’.

A value can be one of the following;:

12 GNU Dico Manual

number A number is a sequence of decimal digits.

boolean A boolean value is one of the following: ‘yes’, ‘true’, ‘t’ or ‘1,
meaning true, and ‘no’, ‘false’, ‘nil’, ‘0’ meaning false.

unquoted string
An unquoted string may contain letters, digits, and any of the
following characters: ‘_°, =7, ©.7, ¢/’ ‘@, ‘¥’ ‘2.

-

quoted string
A quoted string is any sequence of characters enclosed in double-
quotes (‘"’). A backslash appearing within a quoted string in-
troduces an escape sequence, which is replaced with a single
character according to the following rules:

Sequence Replaced with

\a Audible bell character (ASCII 7)

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Newline character (ASCII 10)

\r Carriage return character (ASCII
13)

\t Horizontal tabulation character
(ASCII 9)

\v Vertical ~ tabulation character
(ASCII 11)

\\ A single backslash (‘\”)

\" A double-quote.

Table 4.1: Backslash escapes

In addition, the sequence ‘\newline’ is removed from the string.
This allows you to split long strings over several physical lines,
e.g.

"a long string may be\

split over several lines"

If the character following a backslash is not one of those specified
above, the backslash is ignored and a warning is issued.

Two or more adjacent quoted strings are concatenated, which
gives another way to split long strings over several lines to im-
prove readability. For instance, the following fragment produces
the same result as the example above:

"a long string may be"

" split over several lines"

Here-document
A here-document is a special construct that allows the user to
introduce strings of text containing embedded newlines.

Chapter 4: The dicod daemon. 13

list

The <<word construct instructs the parser to read all the fol-
lowing lines up to the line containing only word, with possible
trailing blanks. Any lines thus read are concatenated together
into a single string. For example:

<<EO0T

A multiline
string

EOT

The body of a here-document is interpreted the same way as
a double-quoted string, unless word is preceded by a backslash
(e.g. ‘<<\EOT’) or enclosed in double-quotes, in which case the
text is read as is, without interpretation of escape sequences.

If word is prefixed with - (a dash), then all leading tab characters
are stripped from input lines and the line containing word. Fur-
thermore, if - is followed by a single space, all leading whitespace
is stripped from them. This allows for indenting here-documents
in a natural fashion. For example:

<<- TEXT
All leading whitespace will be
ignored when reading these lines.
TEXT

It is important that the terminating delimiter be the only token
on its line. The only exception to this rule is allowed if a here-
document appears as the last element of a statement. In this case
a semicolon can be placed on the same line with its terminating
delimiter, as in:

help-text <<-EOT
A sample help text.
EOT;

A list is a comma-separated sequence of values. Lists are delim-
ited by parentheses. The following example shows a statement
whose value is a list of strings:

capability (mime,auth);

In any case where a list is appropriate, a single value is allowed
without being a member of a list: it is equivalent to a list whose
only member is that value. This means that, e.g. ‘capability
mime;’ is equivalent to ‘capability (mime);’.

A block statement introduces a logical group of another statements. It

consists of a keyword, followed by an optional value, and a sequence of
statements enclosed in curly braces, as shown in the example below:

load-module outline {

command "outline";

14 GNU Dico Manual

The closing curly brace may be followed by a semicolon, although this is
not required.

4.3.2 Server Settings

Server settings control how dicod is executed on the server machine.

user string [Configuration]
Run with the privileges of this user. Dicod does not require root privi-
leges, so it is recommended to always use this statement when running
dicod in daemon mode (see Section 4.1 [Daemon Mode], page 9). The
argument is either a user name, or UID prefixed with a plus sign.

Example:
user nobody;

group list [Configuration]
If user is given, dicod will drop all supplementary groups and switch to
the principal group of that user. Sometimes, however, it may be necessary
to retain one or more supplementary groups. For example, this might be
necessary to access dictionary databases. The group statement retains
the supplementary groups listed in list. Each group can be specified either
by its name or by its GID number, prefixed with ‘+’; e.g.:

user nobody;

group (man, dict, +88);
This statement is ignored if user statement is not present or if dicod is
running in inetd mode. See Section 4.2 [Inetd Mode], page 9.

mode enum [Configuration]
Sets server operation mode. The argument is one of:

daemon Run in daemon mode. See Section 4.1 [Daemon Mode],
page 9, for a detailed description.

inetd Run in inetd mode. See Section 4.2 [Inetd Mode], page 9, for
a detailed description.

This statement is overridden by the --inetd command line option. See
[inetd], page 39.

listen list; [Configuration]
Specify the IP addresses and ports to listen on in daemon mode. By
default, dicod will listen on port 2628 on all existing interfaces. Use
the listen statement to abridge the list of interfaces to listen on, or to
change the port number.

Elements of list can have the following forms:
host:port Specifies an IP (version 4 or 6) socket to listen on. The host

part is either an IPv4 in “dotted-quad” notation, or an IPv6
address in square brackets, or a host name. In the latter case,

Chapter 4: The dicod daemon. 15

dicod will listen on all IP addresses corresponding to its ‘A’
or ‘AAAA’ DNS records.

The port part is either a numeric port number or a symbolic
service name which is found in /etc/services file.

Either of the two parts may be omitted. If host is omitted,
dicod will listen on all interfaces. If port is omitted, it de-
faults to 2628. In this case the colon may be omitted, too.

Examples:

listen dict.example.org:2628;
listen 198.51.100.10;

listen [2001:DB8::11];

listen :2628;

inet://host:port

inet4://host:port
Listen on IPv4 socket. The host is either an IP address or a
host name. In the latter case, dicod will start listening on
all TP addresses from the ‘A’ records for this host.

Either host or port (but not both) can be omitted. Miss-
ing host defaults to IPv4 addresses on all available network
interfaces, and missing port defaults to 2628.

Example:
listen inet4://198.51.100.10;

inet6://host:port
Listen on IPv6 socket. The host is either an IPv6 address in
square brackets, or a host name. In the latter case, dicod
will start listening on all IP addresses from the ‘AAAA’ records
for this host.

Either host or port (but not both) can be omitted. Miss-
ing host defaults to IPv6 addresses on all available network
interfaces, and missing port defaults to 2628.

Example:
listen inet6://[2001:DB8::11];

filename

unix://filename
Specifies the name of a UNIX socket to listen on. Filename
must be an absolute file name of the socket.

pidfile string [Configuration]
Store PID of the master process in this file. Default is
localstatedir/run/dicod.pid. Notice that the access bits of

this default directory may be insufficient for dicod to write there after
dropping root privileges (see [user statement|, page 14). One solution to

16 GNU Dico Manual

this is to create a subdirectory with the same owner as given by user
statement and to point the PID file there:

pidfile /var/run/dict/dicod.pid;
Another solution is to make PID directory group-writable and to add the
owner group to the group statement (see [group statement], page 14).

max-children number [Configuration]
Sets maximum number of sub-processes that can run simultaneously. This
is equivalent to the number of clients that can simultaneously use the
server. The default is 64 sub-processes.

inactivity-timeout number [Configuration]
Set inactivity timeout to the number of seconds. The server disconnects
automatically if the remote client has not sent any command within this
number of seconds. Setting timeout to 0 disables inactivity timeout (the
default).
This statement along with max-children allows you to control the server
load.

shutdown-timeout number [Configuration]
When the master server is shutting down, wait this number of seconds
for all children to terminate. Default is 5 seconds.

identity-check boolean [Configuration]
Enable identification check using AUTH protocol (RFC 1413). The re-
ceived user name or UID can be shown in access log using the %1 conver-
sion (see Section 4.3.8 [Access Log], page 24).

ident-keyfile string [Configuration]
Use encryption keys from the named file to decrypt AUTH replies en-
crypted using DES.

ident-timeout number [Configuration]
Set timeout for AUTH input/output operation to number of seconds.
Default timeout is 3 seconds.

4.3.3 Authentication

The server may be configured to request authentication in order to make
some databases or some additional information available to the user. An-
other possible use of authentication is to minimize resource utilization on
the server machine.

GNU Dico supports two types of authentication: the traditional APOP-
style authentication (see Section B.2.5 [AUTH], page 109) and a more
advanced SASL authentication. The latter is described separately, see
Section 4.3.4 [SASL], page 20.

Authentication setup is simple: first, you define a user authentica-
tion database, then you enable it by declaring auth server capability (see
Section 4.3.10 [Capabilities|, page 28):

Chapter 4: The dicod daemon. 17

capability auth;

User authentication database keeps, for each user name, the correspond-
ing plain text password, and, optionally, the names of groups this user be-
longs to. Notice, that due to the specifics of DICT authentication scheme
(see Section B.2.5 [AUTH], page 109), user passwords are stored in plain
text, therefore special care must be taken to protect the contents of your
authentication database from compromise.

The database is defined using the user-db block statement:

user-db url [Configuration]
Declare user authentication database.

Dico’s authentication is designed so that various authentication database
formats can easily be added. A database is identified by its URL, or Universal
Resource Locator. It consists of the following parts (square brackets denoting
optional ones):

type://[[user([:password] @] host]/path[params]

type A database type, or format. See below for a list of available
database formats.

user User name necessary to access the database.
password User password necessary to access the database.
host Domain name or IP address of a machine running the database.

path A path to the database. The exact meaning of this element
depends on the database protocol. It is described in detail when
discussing the particular database protocols.

params A list of protocol-dependent parameters. Each parameter is of
the form keyword=name, multiple parameters are separated with
semicolons.

If the underlying mechanism requires some additional configuration data
that cannot be supplied in an URL, these are passed to it using the following
statement:

options string [user-db conf]
The argument is treated as an opaque string and passed to the authenti-
cation ‘open’ procedure verbatim. Its exact meaning depends on the type
of the database.

The URL defines how the database is accessed. Another important point
is where to get the user data from. This is specified by the following two
sub-statements:

password-resource arg [user-db conf]
A database resource which returns the user’s password.

18 GNU Dico Manual

group-resource arg [user-db conf]
A database resource which returns the list of groups this user is member
of.

The exact semantics of the database resource depends on the type of
database being used. For flat text databases, it means the name of a text
file that contains these data, for SQL databases, the resource is an SQL query,
etc. Below we will discuss URLs and resources used by each database type.

To summarize, the authentication database is defined as:

Define user database for authentication.
user-db url {
Additional configuration options.
options string;

Name of a password resource.
password-resource resource;

Name of the resource returning user group information.
group-resource resource;

}
4.3.3.1 Text Authentication Database

A text authentication database consists of one or two flat text files — a
password file, which contains user passwords, and a group file, which contains
user groups. The latter is optional. Both files have the same format:

e Empty lines are ignored.
e Any text from ‘#’ to the end of the line is ignored.

e Non-empty lines consist of two fields, separated by any amount of white
space. The first field is the user name. It serves as a search key in the
database. The second field is the requested resource.

Record keys in a password file must be unique, i.e. no two records may
contain the same first field. The group file may contain multiple records
with the same key. For example:

$ grep smith pass
smith guessme

$ grep smith group
smith user

smith timing
smith tester

This means that user ‘smith’ has password ‘guessme’ and is a member
of three groups: ‘user’; ‘timing’ and ‘tester’.

A URL of a text database begins with ‘text’ and contains only the path el-
ement, which gives the name of the directory where the database files reside.

Chapter 4: The dicod daemon. 19

The name of a password file is given by the password-resource statement.
The name of a group file is given by the group-resource statement.

For example, if user passwords are kept in the file passwd, user groups
are kept in the file user, and both files reside in /var/db/dico directory,
then the appropriate database configuration will be:

user-db text:///var/db/dico {

password-resource passwd;
group-resource group;

}

4.3.3.2 LDAP Databases.

To configure LDAP user database, you need first to load the ‘1dap’ module
(see Section 5.13 [Idap|, page 68):
load-module ldap;

The URL of the database is: ‘ldap://host[:port]’, where host is the
host name or IP address of the LDAP server, and optional port specifies the
port number it is listening on (by default, port 389 is assumed).

The password-resource statement specifies the name of an attribute
containing the password, and the group-resource supplies the name of the
attribute with the group name.

Additional configuration data are supplied in the options statement,
whose argument is a whitespace-separated list of assignments:

base=base
Sets base DN.

binddn=dn
Sets the DN to bind as.

passwd=string
Sets the password.

tls=bool When set to ‘yes’, enables the use of TLS encryption.

debug=number

Sets OpenLDAP debug level.

user-filter=filter
A LDAP filter to select the objects describing this user. Any
occurrence of ‘$user’ in filter is replaced with the actual user
name, as obtained during the authentication. This variable ex-
pansion occurs much the same way as in shell. In particular, the
variable is expanded only unless it is immediately followed by
an alphanumeric character. For example, it occurs in:

(uid=$user)
and

20 GNU Dico Manual

(uid=$user.1)
But it does not occur in
(uid=$users)

If it is necessary to expand the variable in such a context, enclose
its name in curly braces:

(uid=${userl}s)

group-filter=filter
A LDAP filter that selects the user groups. The filter is expanded
as in user-filter.

The following example shows a LDAP user database configured for base
DN ‘example.com’ which uses ‘posixAccount’ and ‘posixGroup’ objects
from ‘nis.schema’:

user-db "ldap://localhost" {
password-resource userPassword;
group-resource cn;
options "user-filter=(uid=$user) "
"group-filter=(&(objectClass=posixGroup)"
"(memberuid=$user)) "
"base=dc=example,dc=com";
}

A note on password usage is in order here. Most authentication methods
require the passwords to be stored in the database in plain text form. The
use of encrypted passwords (e.g. MD5 or SHA1) is possible only with ‘LOGIN’
and ‘PLAIN’ GSASL authentication methods.

4.3.4 SASL Authentication

The SASL authentication is available if the server was compiled with GNU
SASL.

sasl { statements } [Configuration]
This block statement configures SASL authentication. The following is a
short summary of its syntax and the available substatements:
sasl {

Disable SASL mechanisms listed in mech.

disable-mechanism mech;

Enable SASL mechanisms listed in mech.

enable-mechanism mech;

Set service name for GSSAPI and Kerberos.

service name;

Set realm name for GSSAPI and Kerberos.

realm name;

Define groups for anonymous users.

anon-group group-list;

Chapter 4: The dicod daemon. 21

The list of available authentication mechanisms is configured using two
statements:

disable-mechanism mech [sasl]
Disables SASL mechanisms listed in mech, which is a list of names.

enable-mechanism mech [sasl]
Enables SASL mechanisms listed in mech, which is a list of names.

The server builds a list of available mechanisms using the following algo-
rithm. First, a list of implemented mechanisms is retrieved from the SASL
library. If the enable-mechanism statement is defined, the resulting list is
filtered so that only mechanisms listed in enable-mechanism remain. Fur-
ther, if the disable-mechanism statement is defined, the names listed there
are removed from the list.

service name [sasl]
Sets the service name for GSSAPI and Kerberos mechanisms.

realm name [sasl]
Sets the realm name.

anon-group list [sasl]
Sets the list of user groups considered anonymous.

The database of user credentials depends on the authentication mecha-
nism used. For GSSAPI or Kerberos it is managed by appropriate servers.
Other mechanisms use the standard dicod user database configuration (see
Section 4.3.3 [Authentication|, page 16).

4.3.5 Access Control Lists

Access control lists, or ACLs for short, are lists of permissions that can be
applied to certain dicod objects. They can be used to control who can
connect to the dictionary server and what resources are offered to whom.

An ACL is defined using the acl block statement:

acl name {
definitions

}

The parameter name specifies a unique name for that ACL. This name
will be used by another configuration statements to refer to that ACL (See
Section 4.3.6 [Security Settings|, page 23, and see Section 4.3.12.1 [Database
Visibility], page 32).

A part between the curly braces (denoted by definitions above), is a list
of access statements. There are two types of such statements:

allow user-group sub-acl host-list [ACL]
Allow access to resource.

22 GNU Dico Manual

deny user-group sub-acl host-list [ACL]
Deny access to resource.

All parts of an access statement are optional, but at least one of them
must be present.

The user-group part specifies which users match this entry. Allowed
values are the following:

all All users.

authenticated
Only authenticated users.

group group-list
Authenticated users which are members of at least one of the
groups listed in group-list.
The sub-acl part, if present, branches to another ACL. The syntax of this
group is:
acl name
where name is the name of a previously defined ACL.
Finally, the host-list group matches client IP addresses. It consists of

a from keyword followed by a list of address specifiers. Allowed address
specifiers are:

any Matches any client address.

addr Matches if the client IP equals addr. The latter may be given
either as an IP address or as a host name, in which case it will
be resolved and the first of its IP addresses will be used.

addr /netlen
Matches if first netlen bits from the client IP address equal to
addr. The network mask length, netlen must be an integer num-
ber in the range from 0 to 32 for IPv4, and in the range 0 — 128
for IPv6. The address part, addr, is as described above.

addr /netmask
The specifier matches if the result of logical AND between the
client IP address and netmask equals to addr. The network mask
must be specified in a IP address (either IPv4 or IPv6) notation.

filename Matches if connection was received from a UNIX socket filename,
which must be given as an absolute file name.
To summarize, the syntax of an access statement is:

allow|deny [alllauthenticated|group group-list]
lacl name] [from addr-list]

where square brackets denote optional parts and vertical bar means ‘one of’.

When an ACL is applied to a particular object, its entries are tried in turn
until one of them matches, or the end of the list is reached. If a matched

Chapter 4: The dicod daemon. 23

entry is found, its command verb, allow or deny, defines the result of ACL
match. If the end of list is reached, the result is ‘allow’, unless explicitly
specified otherwise.

For example, the following statement defines an ACL named ‘common’,
that allows access for any user connected via local UNIX socket
/tmp/dicod.sock or coming from a local network ‘192.168.10.0/24’.
Any authenticated users are allowed, provided that they are allowed
by another ACL ‘my-nets’ (which should have been defined before this
definition). Users coming from the network ‘10.10.0.0/24’ are allowed if
they authenticate themselves and are members of groups ‘dicod’ or ‘users’.
Anybody else is denied access:

acl common {
allow all from ("/tmp/dicod.sock", "192.168.10.0/24");
allow authenticated acl "my-nets";
allow group ("dicod", "users") from "10.10.0.0/24";
deny all;

}

See Section 4.3.6 [Security Settings|, page 23, for information on how to
control daemon security settings.

See Section 4.3.12.1 [Database Visibility|, page 32, for a detailed descrip-
tion on how to use ACLs to control access to databases.

4.3.6 Security Settings

This subsection describes configuration settings that control access to various
resources served by dicod.

connection-acl acl-name [Configuration]
Use ACL acl-name to control incoming connections. The ACL itself must
be defined before this statement. Using user-group (see previous sub-
section) in this ACL makes no sense, because the authentication itself is
performed only after the connection have been established.
acl incoming-conn {
allow from 213.130.0.0/19;
deny any;
}

connection-acl incoming-conn;

show-sys-info acl-name [Configuration]
This statement controls whether to show system information in reply
to SHOW SERVER command (see Section B.2.3 [SHOW], page 107). The
information will be shown only if ACL acl-name allows it.
The system information shown includes the following data: name of the

package and its version, name of the system where it was built and the
kernel version thereof, host name, total operational time of the daemon,

24 GNU Dico Manual

number of subprocesses executed so far and average usage frequency. For
example:

dicod (dico 2.10) on Linux 2.6.32,
dict.example.net up 99+04:42:58, 19647 forks (686.9/hour)

4.3.7 Logging and Debugging

The directives described in this subsection provide basic logging capabilities.

log-tag string [Configuration]
Prefix syslog messages with this string. By default, the program name is
used.

log-facility string [Configuration]
Sets the syslog facility to use. Allowed values are: ‘user’, ‘daemon’,
‘auth’, ‘authpriv’, ‘mail’, ‘cron’, ‘localQ’ through ‘local7’ (case-
insensitive), or a facility number.

log-print-severity boolean [Configuration]
Prefix diagnostics messages with a string identifying their severity.

transcript boolean [Configuration]
Controls the transcript of user sessions. If boolean is ‘true’, the transcript
will be output to the logging channel. In the transcript, the lines received
from client are prefixed with ‘C:’, while those sent in reply are marked
with ‘S:’. Here is an excerpt from the transcript output:

S: 220 example.net dicod (dico 2.10) <mime.xversion>
<1645.12128745070Qexample .net>

C: client "Kdict"

S: 250 ok

C: show db

S: 110 16 databases present

S: afr-deu "Afrikaans-German Freedict dictionary"

S: afr-eng "Afrikaans-English FreeDict Dictionary"

L

S

S

..

: 250 ok
(The first line is split in two to fit in the printed page width.) This option
produces lots of output and can significantly slow down the server. Use
it only if you are debugging dicod or some remote client. Never use it in
a production environment.

4.3.8 Access Log

GNU Dico provides a feature similar to Apache’s CustomLog, which keeps a
log of MATCH and DEFINE requests. To enable this feature, specify the name
of the log file using the following directive:

Chapter 4: The dicod daemon. 25

access-log-file string [Configuration]
Sets access log file name.

access-log-file /var/log/dico/access.log;

The format of log file entries is defined via the access-log-format di-
rective:

access-log-format string [Configuration]
Sets format string for access log file.

Its argument can contain literal characters, which are copied into the log
file verbatim, and format specifiers, i.e. special sequences which begin with
‘% and are replaced in the log file as shown in the table below.

holo The percent sign.

ha Remote TP-address.

hA Local TP-address.

7B Size of response in bytes.

yAS) Size of response in bytes in CLF format, i.e. a ‘=’ rather than a
‘0’ when no bytes are sent.

C Remote client (from the CLIENT command, see Section B.2.6
[CLIENT], page 109).

%D The time taken to serve the request, in microseconds.

Hd Request command verb in abbreviated form, suitable for use in

URLSs, i.e. ‘d’ for DEFINE, and ‘m’ for MATCH. See Section 7.1.2
[urls], page 82.

%h Remote host.

%H Request command verb (DEFINE or MATCH).

yal Remote logname (from identd, if supplied). This will return a
dash unless identity-check is set to true. See [identity-check],
page 16.

%m The search strategy.

hp The canonical port of the server serving the request.

%P The PID of the child that served the request.

%q The database from the request.

hr Full request.

%{n}R The nth token from the request (n is 0-based).

%s Reply status. For multiple replies, the form ‘%s’ returns the

status of the first reply, while ‘%>s’ returns that of the last reply.

26 GNU Dico Manual

YA" Time the request was received in the standard Apache format,
e.g.:
[04/Jun/2008:11:05:22 +0300]

h{format}t
The time, in the form given by format, which should be a valid
strftime format. See Appendix C [Time and Date Formats],
page 113, for a detailed description.
The standard ‘%t’ format is equivalent to

[%d/%b/%Y SH: %M %S %z]

WT The time taken to serve the request, in seconds.

YA Remote user from AUTH command.

YA The host name of the server serving the request. See [hostname
directive|, page 27.

yAY Actual host name of the server (in case it was overridden in
configuration).

YAl The word from the request.

For the reference, here is the list of format specifiers that have different
meaning than in Apache: ‘%4C’, ‘%4H’, ‘%m’; ‘%q’. The following format specifiers
are unique to dicod: ‘%d’, ‘“4{n}R’, ‘%V’, ‘%W.

The absence of access-log-format directive is equivalent to the follow-
ing statement:

access-log-format "%h %1 %u %t \"%r\" %>s %b";

It was chosen so as to be compatible with Apache access logs and be
easily parsable by existing log analyzing tools, such as webalizer.

Extending this format string with the client name produces a log format
similar to Apache ‘combined log’:

access-log-format "%h %1 %u %t \"%r\" %>s %b \"\" \"%C\"";

4.3.9 General Settings

Settings described in this subsection configure the basic behavior of the DICT
daemon.

initial-banner-text string [Configuration]
Display the string in the textual part of the initial server reply.

When connection is established, the server sends an initial reply to the
client, that looks like in the example below:

220 example.org <auth.mime> <520.1212912026Qexample.org>

See Section B.1 [Initial Reply], page 105, for a detailed description of its
parts.

Chapter 4: The dicod daemon. 27

The part of this reply after the host name is modifiable and can contain
arbitrary text. You can use initial-banner-text to append any addi-
tional information there. Note, that string may not contain newlines or
angle brackets. For example:

initial-banner-text "Please authenticate yourself,";

This statement produces the following initial reply (split over two lines
for readability):

220 example.org Please authenticate yourself,
<auth.mime> <520.1212912026Q@Texample.org>

hostname string [Configuration]
Sets the hostname. By default, the server determines it automatically.
If, however, it makes a wrong guess, you can fix it using this directive.

The server hostname is used, among others, in the initial reply after ‘220’
code (see above) and may also be displayed in the access log file using
the ‘%v’ escape (see Section 4.3.8 [Access Log|, page 24).

server-info string [Configuration]
Sets the server description to be shown in reply to SHOW SERVER (see
Section B.2.3 [SHOW], page 107) command.

The first line of the reply, after the usual ‘114’ response line, shows the
name of host where the server is running. If the settings of show-sys-
info (see Section 4.3.6 [Security Settings|, page 23) permit, some addi-
tional information about the system is printed.
The lines that follow are taken from the server-info directive. It is com-
mon to specify string using “here-document” syntax (see [here-document],
page 12), e.g.:

server—info <<EQT

Welcome to the FOO dictionary service.

Contact <dict@foo.example.org> if you have questions or
suggestions.
EOT;

help-text string [Configuration]
Sets the text to be displayed in reply to the HELP command.
The default reply to HELP command displays a list of commands under-
stood by the server with a short description of each.
If the string begins with a plus sign, it will be appended to the default
reply:
help-text <<-EOT
+

The commands beginning with an X are extensions.
EQT;

28 GNU Dico Manual

If the string begins with any other character, except ‘+’, it will replace
the default help output. For example:
help-text <<-EOT
There is no help.
See RFC 2229 for detailed information.
EQT;

default-strategy string [Configuration]
Sets the name of the default matching strategy (see Section B.2.2
[MATCH], page 106). By default, Levenshtein matching is used, which is
equivalent to

default-strategy lev;

4.3.10 Server Capabilities

Capabilities are certain server features that can be enabled or disabled at
the system administrator’s will.

capability list [Configuration]
Requests additional capabilities from the Iist.

The argument to capability directive must contain names of existing
dicod capabilities. These are listed in the following table:

auth The AUTH command is supported. See Section 4.3.3 [Authenti-
cation], page 16.

mime The OPTION MIME command is supported. Notice that RFC 2229
requires all servers to support that command, so you should
always specify this capability.

xversion The XVERSION command is supported. It is a GNU extension
that displays the dicod implementation and version number.
See Section B.3 [Extended Commands|, page 110.

xlev The XLEV command is supported. This command allows the
remote party to set and query maximal Levenshtein distance for
lev matching strategy. See Section B.2.2 [MATCH], page 106.
See Section B.3 [Extended Commands|, page 110.

The capabilities set using this directive are displayed in the initial server
reply (see [initial reply|, page 26), and their descriptions are added to the
HELP command output (unless specified otherwise by the help-text state-
ment).

4.3.11 Database Modules and Handlers

A database module is an external piece of software designed to handle a
particular format of dictionary databases. This piece of software is built as
a shared library that dicod loads at run time.

Chapter 4: The dicod daemon. 29

A handler is an instance of the database module loaded by dicod and
configured for a specific database or a set of databases.

Database handlers are defined using the following block statement:

load-module string { ... } [Configuration]
Create an instance of a database module. The argument specifies a unique
name which will be used by subsequent parts of the configuration to refer
to this handler. The ellipsis in the description above represents sub-
statements. As of Dico version 2.10 only one sub-statement is defined:

command string [load-module config]
Sets the command line for this handler. It is similar to the shell’s com-
mand line in that it consists of a name of database module, optionally
followed by a whitespace-separated list of its arguments. The name
of the module specifies the disk file to load (see below for a detailed
description of the loading sequence). Both command name and argu-
ments are passed to the module initialization function (see [dico_init],
page T1).

For example:
load-module dict {
command "dictorg dbdir=/var/dicodb";

}
This statement defines a handler named ‘dict’, which loads the mod-
ule dictorg and passes its initialization function a single argument,
‘dbdir=/var/dicodb’. If the module name is not an absolute file name, as
in this example, the loadable module will be searched in the module load
path.

A common case is when the module does not require initialization argu-
ments and its command string is the same as its name, e.g.:

load-module outline {
command "outline";
}

The configuration syntax provides a shortcut for such usage:

load—-module outline;

If load-module is used this way, it accepts a single string or a list of
strings as its argument. In the latter case, it loads all modules listed in the
argument. For example:

load-module (stratall,substr,word);

A module load path is an internal list of directories which dicod scans
in order to find a loadable file name specified in the command statement. By
default the search order is as follows:

1. Optional prefix search directories specified by the prepend-load-path
directive (see below) and the --load-dir (-L) command line option.

2. GNU Dico module directory: $prefix/lib/dico.

30 GNU Dico Manual

3. Additional search directories specified by the module-load-path direc-
tive (see below).

4. The value of the environment variable LTDL_LIBRARY_PATH.

5. The system dependent library search path (e.g. on GNU/Linux it is
defined by the file /etc/1d.so.conf and the environment variable LD_
LIBRARY_PATH).

The wvalue of LTDL_LIBRARY_PATH and LD_LIBRARY_PATH must
be a colon-separated list of absolute directory names, for example
‘/usr/1ib/mypkg:/1ib/foo’.

In any of these directories, dicod first attempts to find and load the given
filename. If this fails, it tries to append the following suffixes to it:

1. the libtool archive suffix ‘.1a’
2. the suffix used for native dynamic libraries on the host platform, e.g.,

3 b

.s0’, ‘.s1’, etc.

module-load-path list [Configuration]
This directive adds the directories listed in its argument to the module
load path. Example:

module-load-path (/usr/lib/dico,/usr/local/dico/1ib);

prepend-load-path list [Configuration]
Same as module-load-path, but adds directories to the beginning of the
module load path.

4.3.12 Databases

Dictionary databases are defined using the database block statement.

database { statements } [Configuration]
Defines a dictionary database. At least two sub-statements must be de-
fined for each database: name and handler.

visible bool [Database]
Defines whether this database is visible or not. By default, all databases
are visible. You will need this statement if you want to temporary hide the
database without removing it from the configuration. Another common
use case is to hide a database that is used as a member of a virtual
database, so that its contents is available only by querying the parent
database (see Section 4.3.12.2 [Virtual Databases|, page 33).

name string [Database]
Sets the name of this database (a single word). This name will be used
to identify this database in DICT commands.

handler string [Database]
Specifies the handler name for this database and any arguments for it.
This handler must be previously defined using the load-module state-
ment (see Section 4.3.11 [Handlers], page 28).

Chapter 4: The dicod daemon. 31

For example, the following fragment defines a database named ‘en-de’,
which is handled by ‘dictord’ handler. The handler is passed one argument,
database=en-de:

database {
name "en-de";
handler "dictorg database=en-de";

¥

More directives are available to fine-tune the database.

description string [Database]
Supplies a short description, to be shown in reply to SHOW DB command.
The string may not contain new-lines.

Use this statement if the database itself does not supply a description, or
if its description is malformed.

In any case, if the description directive is specified, its value takes
precedence over the description string retrieved from the database itself.

See Section B.2.3 [SHOW], page 107, for a description of SHOW DB com-
mand.

info string [Database]
Supplies a full description of the database. This description is shown in
reply to SHOW INFO (see Section B.2.3 [SHOW], page 107) command. The
string is usually a multi-line text, so it is common to use here-document
syntax (see [here-document], page 12), e.g.:
info <<- EOT
This is a foo-bar dictionary.
Copyright (C) 2008 foo-bar dict group.
Distributed under the terms of GNU Free
Documentation license.
EOT;
Use this statement if the database itself does not supply a full description,
or if its full description is malformed.

As with description, the value of info takes precedence over info strings
retrieved from the database.

The following two directives control the content type and transfer en-
coding used when formatting replies from this database if OPTION MIME (see
Section B.2.4 [OPTION], page 108) is in effect:

mime-headers multiline-string [Database]
Defines the headers to be sent with the replies from this database. Ar-
gument is a here-document (see |[here-document]|, page 12), containing
the headers to be sent with each dictionary entry, if the client sent the
‘OPTION MIME’ command. By default dicod uses MIME headers defined
in the database itself. Use this statement if these are not defined, or if
you want to override them. In this case you would want to include at

32 GNU Dico Manual

least the ‘Content-Type’ and ‘Content-Transfer-Encoding’ headers, as
shown in the example below:
directory {
name "foo";
handler "dictorg";
mime-headers <<- EOT
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: 8bit
EOT;

¥

Valid values for the ‘Content-Transfer-Encoding’ header are:
8bit The content will be transferred as is.

quoted-printable
Non-printable characters will be encoded wusing the
‘quoted-printable’ encoding.

base64 Non-printable characters will be encoded using the ‘base64’
encoding.

4.3.12.1 Database Visibility

A property called database visibility is associated with each dictionary data-
base. It determines whether the database appears in the output of SHOW DB
command, and takes part in dictionary searches.

By default, all databases are defined as publicly visible. You can hide a
database permanently by using the ‘visible no’ statement in its definition.
You can also limit its visibility on global as well as on per-directory basis.
This can be achieved using visibility ACLs.

In general, the visibility of a database is controlled by two access control
lists: a global visibility ACL and a database visibility ACL. The latter takes
precedence over the former.

Both ACLs are defined using the visibility-acl statement:

visibility-acl acl-name [Configuration]
Sets name of the ACL that controls the database visibility. When used in
global scope, this statement sets the global visibility ACL. If used within
a database block, it sets the visibility ACL for that particular database.

Consider the following example:
acl glob-vis {
allow authenticated;
deny all;
3

acl local-nets {

Chapter 4: The dicod daemon. 33

allow from (192.168.10.0/24, /tmp/dicod.sock);
}

visibility-acl glob-vis;

database {
name "terms";
visibility-acl local-nets;

by

In this configuration, the ‘terms’ database is visible to everybody
coming from the ‘192.168.10.0/24’ network and from the UNIX socket
/tmp/dicod.sock, without authorization. It is not visible to users coming
from elsewhere, unless they authenticate themselves.

4.3.12.2 Virtual Databases

A virtual database is a collection of several regular databases. When a search
is performed on a virtual database, it returns matches from the constituent
databases.

Virtual databases can be used for grouping. For example a virtual data-
base may include all dictionaries translating from English to Norwegian.
Another one may include thesauri for English.

Yet another common use for virtual databases is to select different output
markup depending on whether ‘OPTION MIME’ was requested by the user.

Technically, a virtual database is defined by specifying
handler "virtual";

in the database definition. This is a built-in module, so you must not use
the load-module statement.

The names of the member databases (the databases to be included to
this one) are supplied using the database statements:

database name [mime | nomime] [Database]
Specifies the database to be included as a member of this virtual database.
The name argument supplies the name of the database (as set by the name
statement in its definition).

Optional second argument may be used to restrict the use of this database
to the given state of the ‘MIME’ option. Databases marked with ‘mime’
will be used only if the OPTION MIME command has been given for the
current session. Databases marked with ‘nomime’ will be used only if this
command has not been issued.

The following example defines a virtual database for translations from
English to several other languages:

34 GNU Dico Manual

database {
name "English Translating Database";
info "Translations from English to other languages";
handler "virtual";
database "en-sw";
database "en-no";
database "en-pl";

}

It is supposed, that databases ‘en-sw’, ‘en-no’, and ‘en-pl’ are defined
elsewhere in the configuration.

Another example illustrates how to define a database that will select the
format of the articles depending on whether the client requests MIME out-
put. Suppose that the configuration defines two dictionaries: ‘thes_plain’,
with a thesaurus formatted in plaintext, and ‘thes_html’, with the same the-
saurus, but formatted in HI'ML. The following database will return plaintext
responses by default and HT'ML responses after the OPTION MIME command:

database {
name "thesaurus";
handler "virtual";
database thes_plain nomime;
database thes_html mime;

}

Notice, that in this case it makes sense to define member databases as
invisible, to avoid duplicate matches. E.g.:

database {
name "thes_pain";
visible no;

}

database {
name "thes_html";
visible no;

¥

To determine description (whether short or long) for a virtual database,
the following algorithm is used. If the ‘description’ (or, for long descrip-
tion, ‘info’) statement is present in the ‘database’ block, its value is used.
Otherwise, the server obtains descriptions of each member database that is
visible in the current ‘OPTION MIME’ state. If all databases return the same
value, it is used. Otherwise, empty string is used.

Practically, that means that when defining a collection virtual data-
base (as in the first example above), you are better off supplying both
‘description’ and ‘info’ statements.

Chapter 4: The dicod daemon. 35

On the other hand, when defining a mime-switching virtual database
with two members (as in the second example), you can safely omit both
statements: dicod will pick the value from the currently active member
database.

4.3.13 Strategies and Default Searches

A default search is a MATCH request with ‘*’ or ‘!’ as the database argument
(see Section B.2.2 [MATCH], page 106). The former means search in all

available databases, the latter means search in all databases until a match
is found.

Default searches may be quite expensive and may cause considerable
strain on the server. For example, the command MATCH * priefix "" re-
turns all entries from all available databases, which would consume a lot of
resources both on the server and on the client side.

To minimize harmful effects from such potentially dangerous requests, it
is possible to limit the use of certain strategies in default searches.

strategy name { statements } [Configuration]
Restricts the use of the strategy name in default searches.

The statements define conditions the 4th argument of a MATCH command
must match in order to deny the request. The following statements are
defined:

deny-all bool [Configuration]
Unconditionally deny the use of this strategy in default searches.

deny-word list [Configuration]
Deny this strategy if the search word matches one of the words from list.

deny-length-1t number [Configuration]
Deny if length of the search word is less than number.

deny-length-le number [Configuration]
Deny if length of the search word is less than or equal to number.

deny-length-gt number [Configuration]
Deny if length of the search word is greater than number.

deny-length-ge number [Configuration]
Deny if length of the search word is greater than or equal to number.

deny-length-eq number [Configuration]
Deny if length of the search word is equal to number.

deny-length-ne number [Configuration]
Deny if length of the search word is not equal to number.

36 GNU Dico Manual

For example, the following statement denies the use of ‘prefix’ strategy
in default searches if its argument is an empty string:

strategy prefix {
deny-length-eq O;
}

If the dicod daemon is configured this way, it will always return a ‘652’
reply on commands MATCH * prefix "" or MATCH ! prefix "". However, the
use of empty prefix on a concrete database, as in MATCH eng-deu prefix "",
will still be allowed.

4.3.14 Tuning

While tuning your server, it is often necessary to get timing information
which shows how much time is spent serving certain requests. This can be
achieved using the timing configuration directive:

timing boolean [Configuration]
Provide timing information after successful completion of an operation.
This information is displayed after the following requests: MATCH, DEFINE,
and QUIT. It consists of the following parts:

[d/m/c = nd/nm/nc RTr UTu STs]

where:

nd Number of processed define requests. It is ‘0’ after a MATCH
request.

nm Number of processed match requests. It is ‘0’ after a DEFINE
request.

nc Number of comparisons made. This value may be inaccu-
rate if the underlying database module is not able to count
comparisons.

RT Real time spent serving the request.

uT Time in user space spent serving the request.

ST Time in kernel space spent serving the request.

An example of a server reply with timing information follows:
250 Done [d/m/c = 0/63/107265 2.293r 1.120u 0.010s]

You can also add timing information to your access log files, see
Section 4.3.8 [Access Log], page 24.

4.3.15 Command Aliases

Aliases allow a string to be substituted for a word when it is used as the
first word of a command. The daemon maintains a list of aliases that are
created using the alias configuration file statement:

Chapter 4: The dicod daemon. 37

alias word command [Configuration]
Creates a new alias.

Aliases are useful to facilitate manual interaction with the server, as they
allow the administrator to create abbreviations for some frequently typed
commands. For example, the following alias creates new command d which
is equivalent to DEFINE *:

alias d DEFINE "x";

Aliases may be recursive, i.e. the first word of command may refer to
another alias. For example:

alias d DEFINE;
alias da d "x";

This configuration will produce the following expansion:
da word = DEFINE * word

To prevent endless loops, recursive expansion is stopped if the first word
of the replacement text is identical to an alias expanded earlier.

4.3.16 Using Preprocessor to Improve the
Configuration.

Before parsing its configuration file, dicod preprocesses it. The built-
in preprocessor handles only file inclusion and #line statements (see
Section 4.3.1.2 [Pragmatic Comments|, page 10), while the rest of tradi-
tional preprocessing facilities, such as macro expansion, is supported via m4,
which is used as an external preprocessor.

The detailed description of m4 facilities lies far beyond the scope of this
document. You will find a complete user manual in Section “GNU M4” in
GNU M4 macro processor. For the rest of this subsection we assume the
reader is sufficiently acquainted with m4 macro processor.

The external preprocessor is invoked with -s flag, instructing it to in-
clude line synchronization information in its output. This information
is then used by the parser to display meaningful diagnostic. An ini-
tial set of macro definitions is supplied by the pp-setup file, located in
$prefix/share/dico/version/include directory (where version means the
version of GNU Dico package).

The default pp-setup file changes quote characters to ‘[’ and ‘]’, and
renames all m4 built-in macros so they all start with the prefix ‘m4_’. The
latter has an effect similar to GNU m4 --prefix-builtin option, but has
an advantage that it works with non-GNU m4 implementations as well.

As an example of how the use of preprocessor may improve dicod config-
uration, consider the following fragment taken from one of the installations
of GNU Dico. This installation offers quite a few Freedict dictionaries. The
database definition for each of them is almost the same, except for the dictio-
nary name and eventual description entry for several databases that miss it.
To avoid repeating the same text over again, we define the following macro:

38 GNU Dico Manual

defdb(NAME[, DESCR])
Produce a standard definition for a database NAME.
If DESCR is given, use it as a description.
m4_define([defdb], [
database {

name u$1n;

handler "dictorg database=$1";m4_dnl
m4_ifelse([$2],,,[

description "$2";1]1)
}
D

It takes two arguments. The first one, NAME, defines the dictionary name
visible in the output of SHOW DB command. Optional second argument may
be used to supply a description string for the databases that miss it.

Given this macro, the database definitions look like:

defdb(eng-swa)
defdb(swa-eng)
defdb(afr-eng, Afrikaans-English Dictionary)
defdb(eng-afr, English-Afrikaans Dictionary)

4.4 Dicod Exit Codes

Apart from issuing a descriptive error message, dicod attempts to indicate
the reason of its termination by its error code. As usual, a zero exit code
indicates normal termination. The table below summarizes all possible error
codes. For each error code, it indicates its decimal value and its symbolic
name from include/sysexits.h (if available).

0
EX_OK Program terminated correctly.

2 Only child instances of dicod exit with this code. It indicates
that the child did not receive any ‘DICT’ command within the
time out interval (see [inactivity-timeout|, page 16).

64

EX_USAGE
The program was invoked incorrectly, e.g. an invalid option was
given, or an erroneous argument was supplied to an option.

67

EX_NOUSER
Dicod cannot switch to the privileges of the user it is configured
to run as (see [user statement|, page 14).

69

EX_UNAVAILABLE
The server exited due to some error not otherwise described in
this table.

Chapter 4: The dicod daemon. 39

70
EX_SOFTWARE

Some internal software error occurred.

71

EX_OSERR
Some system error occurred, e.g. the program ran out of mem-
ory, or file descriptors, or ‘fork’ failed, etc.

78

EX_CONFIG

An error in the configuration file was detected.

4.5 Dicod Invocation

This section summarizes dicod command line options. Options are subdi-
vided in five categories.

4.5.1 Dicod Operation Mode

The following options select the operation mode. Only one of them can be
present in the command line:

-E Preprocess configuration file and exit. See Section 4.3.16 [Pre-
processor|, page 37.

-i
--inetd Run in inetd mode. See Section 4.2 [Inetd Mode], page 9.

-r

--runtest

--test Run unit tests for the module. Arguments following that option
are parsed as follows:

modname [testargs] [-- initargs]

where modname stands for the name of the module to test, tes-
targs are arguments to the dico_run_test function of the mod-
ule, and initargs are module initialization arguments (passed to
the dico_init method). Square brackets denote optional parts.
Before passing to the corresponding method, both argument lists
are augmented by prepending module name as the first element
(with index 0).

This option implies ——-stderr.

Use the --load-dir (-L) option (see [-load-dir], page 40), if the
module is not located in one of the default load directories (see
[load path], page 29).

See Section 6.4 [Unit Testing|, page 78, for a detailed discussion
of module unit testing.

40 GNU Dico Manual

-t

--lint Check configuration file syntax and exit with code ‘0’ if it is OK,
or with ‘78’ if there are errors. See Section 4.3 [Configuration],
page 10.

4.5.2 Informational Options

The informational options cause the program to print a selected piece of
information and exit. Only one informational option can be used at a time.

-—config-help
Show a summary of the configuration file syntax and allowed
statements. See Section 4.3 [Configuration], page 10.
-h
--help Display a short command line option summary and exit.
--usage List all available command line options and exit.

--version
Print program version and exit.

4.5.3 Modifier Options

These options modify the program behavior:

--config=file
Read this configuration file instead of the default
$sysconfdir/dicod.conf. See Section 4.3 [Configura-
tion], page 10.

-f

--foreground
Operate in foreground. See Section 4.1 [Daemon Mode], page 9.

-L dir

--load-dir=dir
Adds dir to the beginning of module load path. See [load path],
page 29, for detailed discussion.

-s

--single-process
In daemon mode, process connections in the main process, with-
out starting subprocesses for each connection (see Section 4.1
[Daemon Mode], page 9). This means that the daemon is able
to serve only one client at a time. The --single-process op-
tion is provided for debugging purposes only. Never use it in
production environment.

--stderr Output the diagnostics to stderr. See Section 4.1 [Daemon
Mode], page 9.

--syslog After successful startup, output any diagnostic to syslog. This
is the default.

Chapter 4: The dicod daemon. 41

4.5.4 Preprocessor Control

The following options control the use of preprocessor. See Section 4.3.16
[Preprocessor|, page 37, for a detailed discussion.

--define=symbol[=value]

-D symbol[=value]
Define the preprocessor symbol symbol. Optional value supplies
the new symbol value. This option is passed to the preprocessor
verbatim.

-1 dir

--include-dir=dir
Add the directory dir to the list of directories to be searched
for preprocessor include files. See Section 4.3.16 [Preprocessor|,
page 37.

——NO-preprocessor
Do not use external preprocessor. See Section 4.3.16 [Prepro-
cessor|, page 37.

-—preprocessor=prog
Use prog as a preprocessor for configuration file. The default
preprocessor command line is m4 -s, unless overridden while
configuring the package (see Section 3.1 [Default Preprocessor],

page 7).
4.5.5 Debugging Options

-X

--debug=1level
Set debug verbosity level. The level argument is an integer rang-
ing from ‘0’ (no debugging) to ‘100’ (maximum debugging in-
formation).

--no-transcript
Disable transcript mode. This is the default. Use this option if
you wish to temporarily disable transcript mode, enabled in the
configuration file (see Section 4.3.7 [Logging and Debugging],
page 24).

-T

-—transcript
Enable session transcript. This instructs dicod to log all com-
mands it receives and all responses it sends during the ses-
sion. Transcript is logged via the default logging channel (see
Section 4.3.7 [Logging and Debugging], page 24). If logging via
syslog, the ‘debug’ priority is used.
See also Section 7.2.7 [Session Transcript], page 88, for a de-
scription of the similar mode in dico, the client program.

42 GNU Dico Manual

—--source-info
Include source line information in the debugging output.

--trace-grammar
Trace parsing of the config file.

-—trace-lex
Trace the configuration file lexer.

Chapter 5: Modules 43

5 Modules

GNU Dico comes with a set of loadable modules for handling various data-
base formats and extending the server functionality. Modules are binary
loadable files, installed in $prefix/lib/dico. They are configurable on
per-module (see Section 4.3.11 [Handlers|, page 28) and per-database (see

)

Section 4.3.12 [Databases]|, page 30) basis.

In this chapter we will describe the modules included in the distribution
of GNU Dico version 2.10.

5.1 Outline

The outline module supports databases written in Emacs outline mode. It
is not designed for storing large amounts of data, its purpose rather is to
handle small databases that can be composed easily and quickly using the
Emacs editor.

The outline mode is described in Section “Outline Mode” in The Emacs
Editor. In short, it is a usual plain text file, containing header lines and
body lines. Header lines start with one or more stars, the number of starts
indicating the nesting level of the heading in the document structure: one
star for chapters, two stars for sections, etc. Body lines are anything that is
not header lines.

The outline dictionary must have at least a chapter named ‘Dictionary’,
which contains the dictionary corpus. Within it, each section is treated
as a dictionary article, its header line giving the headword, and its body
lines supplying the article itself. Apart from this, two more chapters have
special meaning. The ‘Description’ chapter gives a short description to
be displayed on SHOW DB command, and the ‘Info’ chapter supplies a full
database description for SHOW INFO output. Both chapters are optional.

All three reserved chapter names are case-insensitive.

To summarize, the structure of an outline database is:

* Description
line

* Info
text

* Dictionary

** J]ine
text

[any number of entries follows]

As an example of outline format, the GNU Dico package includes Am-
brose Bierce’s Devil’s Dictionary in this format, see examples/devdict.out.

44 GNU Dico Manual

The initialization of the outline module does not require any command
line parameters. To declare a database, supply its full file name to the
database handler directive, as shown in the example below:

load-module outline;

database {
name "devdict";
handler "outline /var/db/devdict.out";

5.2 Dictorg

The dictorg module supports dictionaries in the format designed by DICT
development group (http://dict.org). Lots of free dictionaries in this
format are available from the FreeDict project.

A dictionary in this format consists of two files: a dictionary database file,
named name.dict or name.dict.dz (a compressed form), and an index file,
which lists article headwords with the corresponding offsets in the database.
The index file is named name.index. The common part of these two file
names, name, is called the base name for that dictionary.

An instance of the dictorg module is created using the following state-
ment:

load-module inst-name {
command "dictorg [options]";

}

where square brackets denote optional part. Valid options are the following:

dbdir=dir
Look for databases in directory dir.

show-dictorg-entries
Dictorg entries are special database entries that keep some ser-
vice information, such as database description, etc. Such entries
are marked with headwords that begin with ‘00-database-’. By
default they are exempt from database look-ups and cannot be
retrieved using MATCH or DEFINE command.

Using show-dictorg-entries removes this limitation.
sort Sort the database index after loading. This option is designed
for use with some databases that have malformed indexes. At

the time of this writing the ‘eng-swa’ database from FreeDict
requires this option.

Using sort may considerably slow down initial database loading.

trim-ws Remove trailing whitespace from dictionary headwords at start
up. This might be necessary for some databases.

http://dict.org
http://freedict.org

Chapter 5: Modules 45

The values set via these options become defaults for all databases using
this module instance, unless overridden in their declarations.

A database that uses this module must be declared as follows:

database {
handler "inst-name database=file [options]";

3

where inst-name is the instance name used in the load-module declaration
above.

The database argument specifies the base name of the database. Unless
file begins with a slash, the value of dbdir initialization option is prepended
to it. If dbdir is not given and file does not begin with a slash, an error is
signalled.

The options above are the same options as described in initialization pro-
cedure: show-dictorg-entries, sort, and trim-ws. If used, they override
initialization settings for that particular database. Forms prefixed with ‘no’
can be used to disable the corresponding option for this database. For ex-
ample, notrim-ws cancels the effect of trim-ws used when initializing the
module instance.

5.3 Gcide

The gcide module provides support for GNU Collaborative International
Dictionary of English. This dictionary can be downloaded from ftp://ftp.
gnu.org/gnu/gcide. It consists of a set of files named from CIDE. A through
CIDE.Z, written using a special markup. See http://gcide.gnu.org.ua,
for a detailed information about the dictionary.

The gcide module is started via the following statement:
load-module gcide;
The database is initialized as follows:

database {
handler "gcide dbdir=directory [options]";

}

The ‘dbdir’ parameter supplies the name of the directory where database
files are located. Upon startup, the module scans the dictionary files and
creates an index file, named GCIDE.IDX, if it does not already exist. The
file is created using an ancillary program idxgcide, described below. Un-
less specified otherwise, this file is created in the same directory where the
database files are located, therefore the directory must be writable for the
user dicod is started as.

Other options are:

ftp://ftp.gnu.org/gnu/gcide
ftp://ftp.gnu.org/gnu/gcide
http://gcide.gnu.org.ua

46 GNU Dico Manual

idxdir directory [gcide parameter]
Specifies the directory where the CIDE.IDX index file resides or should
reside.

index-cache-size size [gcide parameter]
Sets the maximum number of index pages the module keeps in memory
simultaneously. The default value is 16. The pages are cached using
the last recently used algorithm. Raising this value will make dictionary
accesses faster at the expense of using more memory.

index-program progname [gcide parameter]
Specifies the full name of the index program. Usually this option is not
needed, because the module is configured to start the idxgcide utility
from its default location. It is mostly useful for the module developers.

suppress-pr [gcide parameter]
This parameter suppresses the output of ‘pr’ (pronunciation) tags. Ac-
cording to GCIDE docs, very few of the pronunciation fields have been
filled in, so it might be reasonable to avoid displaying them at all.

Starting from version 0.51, GCIDE contains the file INFO, which provides
basic information about the dictionary. The gcide module returns contents
of this file at the ‘SHOW INFO’ request. The first line of this file (with the
trailing newline and final point removed) is returned as the short database
description.

Here’s a full example of a ‘gcide’ as used in ‘dico.gnu.org.ua’:
load-module gcide;

database {
name "gcide";
handler "gcide dbdir=/var/dictdb/gcide-0.51 suppress-pr";
languages-from "en";
languages-to "en";

5.3.1 idxgcide

The idxgcide utility is used by the gcide module to index the GCIDE
dictionary. You can start it manually to reindex the database. It can be
needed, for example, if you install a modified version of the dictionary. The
program is installed in libexecdir. The usage is:

idxgcide [options] dbdir [idxdir]

The only mandatory argument dbdir specifies the name of the directory
where the GCIDE dictionary is installed. The optional idxdir argument
specifies the directory for the index file, if it differs from dbdir. Available
options are:

Chapter 5: Modules 47

—--debug

-d Debug lexical analyzer.

--dry-run

-n Do nothing, but print everything. This implies --verbose.
--verbose

-v Increase output verbosity. This option can be specified multi-

ple times, each occurrence increasing the verbosity level by one.
By default the utility outputs only errors and warnings. At level
one, it prints additionally the names of source files that are being
indexed at the moment. At level two (the maximum level imple-
mented at the moment) it outputs each headword being indexed
along with its location. This is useful only for debugging.

--page-size=number

-p number Defines the size of index file page. The number specifies the size
in bytes. The following case-insensitive suffixes can be used: ‘k’
(‘kb’), ‘m’ (‘mb’) or ‘g’ (‘gb’), specifying kilobytes, megabytes and
gigabytes (ouch!) correspondingly.
The default page size is 10240 bytes.

5.4 Wordnet

WordNet is a lexical database for the English language, created and main-
tained at the Cognitive Science Laboratory of Princeton University!. It
groups English words into sets of synonyms called synsets, provides short,
general definitions, and records the various semantic relations between these
synonym sets.

Dico provides a wordnet module for reading WordNet lexical database
files. The module relies on 1ibWN, the support library distributed with the
WordNet database.

There is a point worth noticing if you plan to use the WordNet library.
Normally, the 1ibWN is compiled as a static library with position-dependent
code, which makes it difficult (or impossible, on 64-bit architectures) to use
from the dynamically-loaded libraries, such as dicod modules. So, first of all
you will need to rebuild WordNet so that it contains position-independent
code. To do so, change to the WordNet source directory and reconfigure it
as follows:

./configure CFLAGS=-fPIC [other_options]
where other_options stands for any other options you might wish to pass
to configure.
If you are going to run this command in a source directory that has been
previously configured, it is advisable to run ‘make distclean’ beforehand.

! See http://wordnet.princeton.edu/wordnet/, for a detailed information, including
links to download.

http://wordnet.princeton.edu/wordnet/

48 GNU Dico Manual

Debian-based systems provide a package ‘wordnet-dev’, which con-
tains a properly built shared library. However, this library is named
‘libwordnet.so’, instead of the expected ‘1ibWN.so’. On such systems you
will have to use the —-with-1ibWN option to configure, in order to inform it
about the change:

./configure --with-libWN=wordnet

Argument to this option is the new basename for the 1ibWN library,
without file suffix. Optionally, the ‘1ib’ prefix is allowed,

The wordnet module is compiled automatically if the configure script
was able to find the library and its header file wn.h. If it was not, use
the --with-wordnet configure option to specify the location where these
files can be found. For example, if WordNet was installed using the default
procedure, then the following option will do the job:

./configure --with-wordnet=/usr/local/WordNet-3.0

This command tells Dico to look for WordNet library files in /usr/
local/WordNet-3.0/1ib and for include files in /usr/local/WordNet-3.0/
include.

A compiled module is loaded using the following statement:

load-module wordnet {
command "wordnet [parameters]";

¥

Optional parameters are:

wnhome dir [wordnet module parameter]
Base directory for WordNet files. This is the directory where WordNet
was installed. For the wordnet module to work, it must contain the dict
subdirectory with WordNet dictionary files.
If you installed WordNet to /usr/local/WordNet-3.0, so that running
1s on that directory shows you:

$ 1s /usr/local/WordNet-3.0/
bin/ dict/ doc/ include/ 1lib/ man/
then you would use
load-module wordnet {
command "wordnet wnhome=/usr/local/WordNet-3.0";

}

wnsearchdir dir [wordnet module parameter]
Directory in which the WordNet database has been installed.

Normally, these values are set at compile time and you won’t need to
override them. The use of these parameters may, however, be necessary if
the database was moved or installed in a non-standard location.

One or more WordNet database instances can be defined. They all will
be sharing the same database. The reason for having several database in-
stances is that they may have different output options. For example, you

Chapter 5: Modules 49

may configure one database to return word definitions and another one to
act as a thesaurus.

Dico version 2.10 defines the following database parameters:

pos value [wordnet database parameter]
Select part of speech to be displayed by this database. By default, all
parts of speech are displayed. Valid values are:

all Display all parts of speech. This is the default.
noun Display only nouns.

verb Display only verbs.

adj

adjective Display only adjectives.

adv
adverb Display only adverbs.

satellite
adjsat Display only satellites.

merge-defs [wordnet database parameter]

When specified, this parameter instructs the WordNet database to merge
all definitions with the same part of speech into a single definition, which
will be returned in the usual dictionary fashion, e.g.:

sail

n. 1. a large piece of fabric (usually canvas fabric) by

means of which wind is used to propel a sailing vessel

Synonyms: {canvas}, {canvass}, {sheet}

2. an ocean trip taken for pleasure

Synonyms: {cruise}

3. any structure that resembles a sail

v. 1. traverse or travel on (a body of water); "We sailed

the Atlantic"; "He sailed the Pacific all alone"

2. move with sweeping, effortless, gliding motions

By default, each definition is returned as a separate entry.

As an example, the following is the database definition the author uses
on his server:

database {
name "WordNet";
handler "wordnet merge-defs";
languages-from "en";
languages-to "en";
description "WordNet dictionary, version 3.0";

50 GNU Dico Manual

5.5 Guile

Guile is an acronym for GNU’s Ubiquitous Intelligent Language for Ex-
tensions. It provides a Scheme interpreter conforming to the R5RS lan-
guage specification and a number of convenience functions. For information
about the language, refer to Revised(5) Report on the Algorithmic Language
Scheme. For a detailed description of Guile and its features, see Section
“Overview” in The Guile Reference Manual.

The guile module provides an interface to Guile that allows for writing
GNU Dico modules in Scheme. The module is loaded using the following
configuration file statement:

load-module mod-name {
command "guile [options]"
" init-script=script"
" init-args=args"
" init-fun=function";
}

The init-script parameter specifies the name of a Scheme source file
to be loaded in order to initialize the module. The init-args parameter
supplies additional arguments to the module. They will be accessible to the
script via command-line function. This parameter is optional.

The init-fun parameter specifies the name of a function that will be
invoked to perform initialization of the module and of particular databases.
See Section 5.5.2 [Guile Initialization|, page 52, for a description of initial-
ization sequence. Optional arguments, options, are:

debug Enable Guile debugging and stack traces.
nodebug Disable Guile debugging and stack traces (default).

load-path=path
Append directories from path to the list of directories which
should be searched for Scheme modules and libraries. The path
must be a list of directory names, separated by colons.

This option modifies the value of Guile’s %load-path variable.
See Section “Configuration Build and Installation” in The Guile
Reference Manual.

Guile databases are declared using the following syntax:

database {
name "dbname";
handler "mod-name [options] cmdline";

¥

where:

dbname gives the name for this database,

Chapter 5: Modules 51

mod-name
the name given to Guile module in load-module statement (see
above),

options options that override global settings given in the load-module

statement. The following options are understood: init-script,
init-args, and init-fun. Their meaning is the same as for
load-module statement (see above), except that they affect only
this particular database.

cmdline the command line that will be passed to the Guile open-db
callback function (see [open-db], page 53).

5.5.1 Virtual Functions

A database handled by the guile module is assigned a virtual function
table. This table is an association list which keeps Scheme call-back functions
implemented to perform particular tasks on that database. In this list, the
car of each element contains the name of a function, and its cdr gives the
corresponding function. The defined function names and their semantics
are:

open Open the database.

close Close the database.

descr Return a short description of the database.
info Return a full information about the database.
define Define a word.

match Look up a word in the database.

output Output a search result.

result-count
Return number of entries in the result.

For example, the following is a valid virtual function table:
(1ist (cons "open" open-module)
(cons "close" close-module)
(cons "descr" descr)
(cons "info" info)
(cons "define" define-word)
(cons "match" match-word)
(cons "output" output)
(cons "result-count" result-count))

Apart from a per-database virtual table, there is also a global virtual
function table, which supplies entries missing in the former. Both tables are
created during the module initialization, as described in the next subsection.

The purposes of particular virtuals functions are described in Section 5.5.3
[Guile API], page 52.

52 GNU Dico Manual

5.5.2 Guile Initialization

The following configuration statement causes loading and initialization of
the guile module:

load-module mod-name {
command "guile init-script=script"
" init-fun=function";
}

Upon module initialization stage, the module attempts to load the file
named script. The file is loaded using primitive-load call (see Section
“Loading” in The Guile Reference Manual), i.e. the load paths are not
searched, so script must be an absolute path name. The init-fun param-
eter supplies the name of the initialization function. This Scheme function
constructs virtual function tables for the module itself and for each database
that uses this module. It must be declared as follows:

(define (function arg)
)

This function is called several times. First of all, it is called after the
script is loaded. This time it is given #f as its argument, and its return
value is saved as a global function table. Then, it is called for each database
statement that has mod-name (used in load-module above) in its handler
keyword, e.g.:

database {
name db-name;
handler "mod-name ...";

}

This time, it is given db-name as its argument and the value it returns
is stored as the virtual function table for this particular database.

The following example function returns a complete virtual function table:
(define-public (my-dico-init arg)
(list (cons "open" open-module)

(cons "close" close-module)
(cons "descr" descr)
(cons "info" info)
(cons "lang" lang)
(cons "define" define-word)
(cons "match" match-word)
(cons "output" output)
(cons "result-count" result-count)))

5.5.3 Guile API

This subsection describes callback functions that a Guile database module
must provide. Each description begins with the function prototype and its
entry in the virtual function table.

Callback functions can be subdivided into two groups: database functions
and search functions.

Chapter 5: Modules 53

Database callback functions are responsible for opening and closing data-
bases and for returning information about them.

open-db name . args [Guile Callback]
Virtual table: (cons "open" open-db)

Open the database. The argument name contains database name as
given in the name statement of the corresponding database block (see
Section 4.3.12 [Databases|, page 30). Optional argument args is a list
of command line parameters obtained from cmdline in handler state-
ment (see [guile-cmdline], page 50). For example, if the configuration file
contained:
database {
name "foo";
handler "guile db=file 1 no";
}
then the open-db callback will be called as:
(open-db "foo" ’("db=file" "1" "no"))
The open-db callback returns a database handle, i.e. an opaque object
that will subsequently be used to identify this database. This value,
hereinafter named dbh, will be passed to another callback functions that
need to access the database.

The return value #f or ’ () indicates an error.

close-db dbh [Guile Callback]
Virtual Table: (cons "close" close-db)

Close the database. This function is called during the cleanup procedure,
before termination of dicod. The argument dbh is a database handle
returned by open-db.

The return value from close-db is ignored. To communicate errors to
the daemon, throw an exception.

descr dbh [Guile Callback]
Virtual Table: (cons "descr" descr)

Return a short textual description of the database, for use in SHOW DB
output. If there is no description, returns #f or ’ ().

The argument dbh is a database handle returned by open-db.

This callback is optional. If it is not defined, or if it returns #£ (° ()), the
text from description statement is used (see Section 4.3.12 [Databases],
page 30). Otherwise, if no description statement is present, an empty
string will be returned.

54 GNU Dico Manual

info dbh [Guile Callback]
Virtual Table: (cons "info" info)

Return a verbose, eventually multi-line, textual description of the data-
base, for use in SHOW INFO output. If there is no description, returns #f
or >Q).

The argument dbh is a database handle returned by open-db.

This callback is optional. If it is not defined, or if it returns #£ (°> ()), the
text from info statement is used (see Section 4.3.12 [Databases], page 30).
If there is no info statement, the string ‘No information available’ is
used.

lang dbh [Guile Callback]
Virtual Table: (cons "lang" lang)

Return a cons of languages supported by this database: Its car is a list
of source languages, and its cdr is a list of destination languages. For
example, the following return value indicates that the database contains
translations from English to French and Spanish:

(cons (list "en") (list "fr" "es"))

A database is searched in a two-phase process. First, an appropriate
callback is called to do the search: define-word is called for DEFINE searches
and match-word is called for matches. This callback returns an opaque
entity, called result handle, which is then passed to the output callback,
which is responsible for outputting it.

define-word dbh word [Guile Callback]
Virtual Table: (cons "define" define-word)

Find definitions of word word in the database dbh. Return a result han-
dle. If nothing is found, return #f or ’> ().

The argument dbh is the database handle returned by open-db.

match-word dbh strat key [Guile Callback]
Virtual Table: (cons "match" match-word)

Find in the database dbh all headwords that match key, using strategy
strat. Return a result handle. If nothing is found, return #£ or > ().

The key is a Dico Key object, which contains information about the word
being looked for. To obtain the actual word, use the dico-key->word
function (see [dico-key->word], page 55).

The argument dbh is a database handle returned by open-db. The match-
ing strategy strat is a special Scheme object that can be accessed using
a set of functions described below (see Section 5.5.4 [Dico Scheme Prim-
itives], page 55).

Chapter 5: Modules 55

result-count resh [Guile Callback]
Virtual Table: (cons "result-count" result-count)

Return the number of elements in the result set resh.

output resh n [Guile Callback]
Virtual Table: (cons "output" output)

Output nth result from the result set resh. The argument resh is a result
handle returned by define-word or match-word callback.

The data must be output to the current output port, e.g. using display
or format primitives. If resh represents a match result, the output must
not be quoted or terminated by newlines.

It is guaranteed that the output callback will be called as many times as
there are elements in resh (as determined by the result-count callback)
and that for each subsequent call the value of n equals its value from the
previous call incremented by one.

At the first call n equals 0.

5.5.4 Dico Scheme Primitives

GNU Dico provides the following Scheme primitives for accessing various
fields of the strat and key arguments to match callback:

dico-key? obj [Function]
Return ‘#t’ if obj is a Dico key object.

dico-key->word key [Function]
Extract the lookup word from the key object key.

dico-make-key strat word [Function]
Create new key object from strategy strat and word word.

dico-strat-selector? strat [Function]
Return true if strat has a selector (see Section 6.2.2 [Selector], page 76).

dico-strat-select? strat word key [Function]
Return true if key matches word as per strategy selector strat. The key
is a ‘Dico Key’ object.

dico-strat-name strat [Function]
Return the name of strategy strat.

dico-strat-description strat [Function]
Return a textual description of the strategy strat.

dico-strat-default? strat [Function]
Return true if strat is a default strategy. See Section B.2.2 [MATCH],
page 106.

56 GNU Dico Manual

dico-register-strat strat descr [fun] [Function]
Register a new strategy. If fun is given it will be used as a callback for
that strategy. Notice, that you can use strategies implemented in Guile
in your C code as well (see Section B.2.2 [MATCH], page 106).
The selector function must be declared as follows:
(define (fun key word)
)
It must return #t if key matches word, and #f otherwise.

5.5.5 Example Module

In this subsection we will show how to build a simple dicod module written
in Scheme. The source code of this module, called listdict.scm and a
short database for it, numerals-pl.db, are shipped with the distribution in
the directory examples.

The database is stored in a disk file in form of a list. The first two elements
of this list contain database description and full information strings. Rest of
elements are conses, whose car contains the headword, and cdr contains the
corresponding dictionary article. Following is an example of such a database:

("Short English-Norwegian numerals dictionary"
"Short English-Norwegian dictionary of numerals (1 - 7)"

(”one nooon enu)
("tWO" . "tO")
("three" . "tre")
("four" . "fire")
(llfivell . “fem")
("SiX" . "seks")
(”seven" . "sju”))

We wish to declare such databases in dicod.conf the following way:

database {
name "numerals";
handler "guile example.db";

}

Thus, the rest argument to ‘open-db’ callback will be ‘("guile"
"example.db")’ (see [open-db], page 53). Given this, we may write the
callback as follows:

(define (open-db name . rest)
(let ((db (with-input-from-file
(cadr rest)

(lambda () (read)))))

(cond

((1ist? db) (cons name db))

(else

(format (current-error-port) "open-module: ~A: invalid format\n"

(car args))

#£))))

Chapter 5: Modules 57

The list returned by this callback will then be passed as a database handle
to another callback functions. To facilitate access to particular elements of
this list, it is convenient to define the following syntax:

(define-syntax db:get
(syntax-rules (info descr name corpus)

((db:get dbh name) ;; Return the name of the database.
(list-ref dbh 0))

((db:get dbh descr) ;; Return the desctiption.
(list-ref dbh 1))

((db:get dbh info) ;3 Return the info string.

(list-ref dbh 2))
((db:get dbh corpus) ;; Return the word list.
(list-tail dbh 3))))

Now, we can write ‘descr’ and ‘info’ callbacks:

(define (descr dbh)
(db:get dbh descr))

(define (info dbh)
(db:get dbh info))

The two callbacks ‘define-word’ and ‘match-word’ provide the core
module functionality. Their results will be passed to ‘output’ and
‘result-count’ callbacks as a “result handler” argument. In the spirit
of Scheme, we make the result a list. Its car is a boolean value: #t,
if the result comes from ‘define-word’ callback, and #f if it comes
from ‘match-word’. The cdr of this list contains a list of matches. For
‘define-word’, it is a list of conses copied from the database word list,
whereas for ‘match-word’, it is a list of headwords.

The ‘define-word’ callback returns all list entries whose cars contain
the look up word. It uses mapcan function, which is supposed to be defined
elsewhere:

(define (define-word dbh word)
(let ((res (mapcan (lambda (elt)
(and (string-ci=? word (car elt))
elt))
(db:get dbh corpus))))
(and res (cons #t res))))

The ‘match-word’ callback (see [match-word], page 54) takes three argu-
ments: a database handler dbh, a strategy descriptor strat, and a word word
to look for. The result handle it returns contains a list of headwords from
the database that match word in the sense of strat. Thus, the behavior of
‘match-word’ depends on the strat. To implement this, let’s define a list of
directly supported strategies (see below for definitions of particular ‘match-’
functions):

(define strategy-list
(1ist (cons "exact" match-exact)
(cons "prefix" match-prefix)
(cons "suffix" match-suffix)))

58 GNU Dico Manual

The ‘match-word’ callback will then select an entry from that list and
call its cdr, e.g.:
(define (match-word dbh strat key)
(let ((sp (assoc (dico-strat-name strat) strategy-list)))
(let ((res (cond
(sp
((cdr sp) dbh strat (dico-key->word key)))
If the requested strategy is not in that list, the function will use the selec-
tor function if it is available, and the default matching function otherwise:
((dico-strat-selector? strat)
(match-selector dbh strat key))
(else
(match-default dbh strat (dico-key->word key))))))

Notice the use of dico-key->word function to extract the actual lookup
word from the key object.

To summarize, the ‘match-word’ callback is:

(define (match-word dbh strat key)
(let ((sp (assoc (dico-strat-name strat) strategy-list)))
(let ((res (cond
(sp
((cdr sp) dbh strat (dico-key->word key)))
((dico-strat-selector? strat)
(match-selector dbh strat key))
(else
(match-default dbh strat (dico-key->word key))))))
(if res
(cons #f res)
#£))))
Now, let’s create the ‘match-’ functions it uses. The ‘exact’ strategy is
easy to implement:
(define (match-exact dbh strat word)
(mapcan (lambda (elt)
(and (string-ci=7 word (car elt))
(car elt)))
(db:get dbh corpus)))

The ‘prefix’ and ‘suffix’ strategies are implemented using SRFI-13
(see Section “SRFI-13” in The Guile Reference Manual) functions string-
prefix-ci? and string-suffix-ci?, e.g.:

(define (match-prefix dbh strat word)
(mapcan (lambda (elt)
(and (string-prefix-ci? word (car elt))
(car elt)))
(db:get dbh corpus)))

Notice that whereas the ‘prefix’ strategy is defined by the server itself,

the ‘suffix’ strategy is an extension, and should therefore be registered:
(dico-register-strat "suffix" "Match word suffixes")

The match-selector function is pretty similar to its siblings, except that
it uses dico-strat-select? (see Section 5.5.4 [Dico Scheme Primitives],

Chapter 5: Modules 59

page 55) to select the matching elements. This also leads to this function
expecting a key as its third argument, in contrast to the previous matchers,
which expect the actual lookup word there:

(define (match-selector dbh strat key)

(mapcan (lambda (elt)
(and (dico-strat-select? strat (car elt) key)
(car elt)))
(db:get dbh corpus)))
Finally, the match-default is a variable that refers to the default match-

ing strategy for this module, e.g.:

(define match-default match-prefix)

The two callbacks left to define are ‘result-count’ and ‘output’. The
first of them simply returns the number of elements in cdr of the result:
(define (result-count rh)
(length (cdr rh)))
The behavior of ‘output’ depends on whether the result is produced by
‘define-word’ or by ‘match-word’.
(define (output rh n)
(if (car rh)
;3 Result comes from DEFINE command.
(let ((res (list-ref (cdr rh) n)))
(display (car res))
(newline)
(display (cdr res)))
;35 Result comes from MATCH command.
(display (list-ref (cdr rh) n))))
Finally, at the end of the module the callbacks are made known to dicod
by the module initialization function:
(define-public (example-init arg)
(list (cons "open" open-module)
(cons "descr" descr)
(cons "info" info)
(cons "define" define-word)
(cons "match" match-word)
(cons "output" output)
(cons "result-count" result-count)))

Notice, that in this implementation ‘close-db’ callback was not needed.

5.6 Python

The python module provides an interface which allows programmers to write
loadable modules in Python. The syntax for loading the module is:

load-module name {
command "python"
" init-script=name"
" load-path=path"
" root-class=name";

60 GNU Dico Manual

}

All parameters are optional:

load-path=path [python module]
Augments the default search path for Python modules. The format of
path is the usual UNIX path specification: a colon-separated list of di-
rectory names.

init-script=name [python module]
Specifies the name of the initial Python source file. This file will be loaded
and interpreted immediately after loading the module.

root-class=name [python module]
Sets the name of the Python root class, which is responsible for the dic-
tionary operations.

A particular instance of the python module is loaded using the handler
statement within a database block. This statement takes the same parame-
ters as described above, plus any number of command line arguments, which
will be passed to the root class constructor.

5.6.1 Python Dictionary Class

The dictionary class must define the following methods:

__init__ self *argv [Method on DictionaryClass]
Class constructor. The argv array supplies positional arguments from the
handler statement in the configuration file.

open self dbname [Method on DictionaryClass]
Opens the database named dbname. Returns ‘True’ on success and
‘False’ on failure.

close self [Method on DictionaryClass|
Closes the database.

descr self [Method on DictionaryClass]
Returns a short description of the database.

info self [Method on DictionaryClass]
Returns a text describing the database.

lang self [Method on DictionaryClass|
Optional. Returns supported languages as ‘(src, dst)’.

define_word self word [Method on DictionaryClass]
Defines word. Returns a result (an opaque Python object) if the definition
was found or ‘False’ otherwise.

Chapter 5: Modules 61

match_word self strat word [Method on DictionaryClass|
Searches for word in the database using strategy strat. Returns a re-
sult (an opaque Python object) if some matches were found or ‘False’
otherwise.

output self result n [Method on DictionaryClass|
Outputs nth result from the result set result.

result_count self result [Method on DictionaryClass]
Returns number of elements in the result set.

compare_count self result [Method on DictionaryClass]
Optional. Returns the number of comparisons performed when construct-
ing the result set.

result_headers self result hdr [Method on DictionaryClass|
Optional. Returns a dictionary of MIME headers.

free_result self result [Method on DictionaryClass|
Reclaims any resources used by the result set.

5.6.2 Dico Python Primitives

register_strat name descr [proc] [Python primitive]
Registers new match strategy. The arguments are:
name Strategy name for use in the MATCH command.
descr The dscription, which will appear in the output of SHOW

STRAT command.
proc Optional selector procedure.
If the proc argument is present, it must be the name of a Python function
declared as:
def select(opcode key headword):
Its arguments are:

opcode Integer operation code.

key An DicoSelectionKey object identifying the search term (see
Section 5.6.2.1 [DicoSelectionKey], page 62).

headword The headword being examined.

At the beginning of the search, the function is called with the
‘DICO_SELECT_BEGIN’ as its opcode argument. It must perform the
necessary initialization and return.

At the end of the search loop, the function is called with opcode
‘DICO_SELECT_END’. It must perform the necessary deinitialization pro-
cedures and exit.

In both cases, the key and headword arguments are not defined.

62 GNU Dico Manual

Within the search loop, the function will be called for each headword
from the database. The opcode parameter will be ‘DICO_SELECT_RUN’.
In this case the function must return ‘True’ if the headword matches the
key and ‘False’ otherwise.

register_markup name [Python primitive]
Registers a markup name.

current_markup [Python primitive]
Returns the name of the current markup.

5.6.2.1 The DicoSelectionKey class

The DicoSelectionKey class represents a search key and is used when look-
ing for matches. Calling str on the object of that class returns the search
term itself, as does the word method:

word [Method on DicoSelectionKey]
Returns the search term. It is equivalent to the __str__ attribute.

5.6.2.2 The DicoStrategy class
A match strategy is represented by an object of the DicoStrategy class.

name [Variable of DicoStrategy]
The name of that strategy.

descr [Variable of DicoStrategy]
Textual description of the strategy.

has_selector [Variable of DicoStrategy]
‘True’ if this strategy has a selector (see [Python Selector], page 61).

name is_default [Variable of DicoStrategy]
‘True’ if this is the default strategy.

select headword key [Method on DicoStrategy|
Returns ‘True’ if key matches headword as per this strategy.

5.6.3 Python Example
In this subsection we will show a simple database module written in Python.
This module handles simple textual databases in the following format:

e Empty lines and lines beginning with double dash are ignored.

e A line beginning with ‘descr:’ introduces a short dictionary descrip-
tion for SHOW DB. The ‘descr:’ prefix and the white space immediately
following it are removed. E.g.:

descr: Short English-Norwegian numerals dictionary

e Lines beginning with ‘info:’ provide a verbose description of the data-
base. These lines are concatenated after removing the ‘info:’ prefix
and white space immediately following it. E.g.:

Chapter 5: Modules 63

info: A short English-Norwegian (Bokmal) dictionary
info: of numerals.
info:
info: This dictionary is public domain.
e A line beginning with ‘lang:’ defines source and destination languages
for this dictionary. E.g.:
lang: en : nb
e Any line consisting of exactly two words defines a dictionary entry. E.g.:

one en
two to
three tre
four fire

Now, let’s create a module for handling this format. First, we need to
import Dico primitives (see Section 5.6.2 [Dico Python Primitives|, page 61)
and the ‘sys’ module. The latter is needed for output functions:

import dico
import sys
Then, a result class will be needed for match_word and define_word meth-
ods. It will contain the actual data in the variable ‘result’:
class DicoResult:
actual data.
result = {}
number of comparisons.
compcount = 0

def __init__ (self, *argv):
self.result = argv[0]
if len (argv) == 2:
self.compcount = argv[1]

def count (self):
return len (self.result)

def output (self, n):
pass

def append (self, elt):
self.result.append (elt)
The following two classes extend ‘DicoResult’ for use with ‘DEFINE’ and
‘MATCH’ operations. The define_word method will return an instance of the
‘DicoDefineResult’ class:
class DicoDefineResult (DicoResult):
def output (self, n):
print "%d. %s" % (n + 1, self.result[n])

64 GNU Dico Manual

The match_word method will return an instance of the ‘MatchResult’ class:

class DicoMatchResult (DicoResult):
def output (self, n):
sys.stdout.softspace = 0
print self.result[n],

Now, let’s define the dictionary class:

class DicoModule:

The dictionary converted to associative array.
adict = {}
The database name.
dbname = ’’
The name of the corresponding disk file.
filename = ’°
A sort information about the database.
mod_descr = ’°’
A verbose description of the database is kept.
as an array of strings.
mod_info = []
A list of source and destination languages:
langlist = ()

The class constructor takes a single argument, defining the name of the

database file:

def __init__ (self, *argv):
self.filename = argv[0]
pass

The ‘open’ method opens the database and reads its data:

def open (self, dbname):
self.dbname = dbname
file = open (self.filename, "r")
for line in file:
if line.startswith (°--7):
continue
if line.startswith (’descr: ’):
self.mod_descr = line[7:].strip (° \n’)
continue
if line.startswith (’info: ’):
self .mod_info.append (linel[6:].strip (° \n’))
continue
if line.startswith (’lang: ’):
s = line[6:].strip (° \n’).split(’:’, 2)
if (len(s) == 1):
self.langlist = (s[0].split (), \
s[0].split ())

Chapter 5: Modules 65

else:
self.langlist = (s[0].split (O, \
s[1].split ()

continue
f = line.strip (° \n’).split C 2, 1)
if len (f) == 2:

self.adict[f[0].lower()] = f[1].strip (° ?)

file.close()

return True
The database is kept entirely in memory, so there is no need for ‘close’
method. However, it must be declared anyway:

def close (self):

return True

The methods returning database information are trivial:

def descr (self):
return self.mod_descr

def info (self):
return ’\n’.join (self.mod_info)

def lang (self):
return self.langlist
The ‘define_word’ method checks if the search term is present in the dic-
tionary, and, if so, converts it to the DicoDefineResult:
def define_word (self, word):
if self.adict.has_key (word):
return DicoDefineResult ([self.adict[word]])
return False
The ‘match_word’ method supports the ‘exact’ strategy natively via the
has_key attribute of adict:
def match_word (self, strat, key):
if strat.name == "exact":
if self.adict.has_key (key.word.lower ()):

return DicoMatchResult \
([self.adict [key.word.lower()1])

Other strategies are supported as long as they have selectors:
elif strat.has_selector:
res = DicoMatchResult ([], len (self.adict))
for k in self.adict:
if strat.select (k, key):
res.append (k)
if res.count > O:
return res
return False

66 GNU Dico Manual

The rest of methods rely on the result object to do the right thing:
def output (self, rh, n):
rh.output (n)
return True

def result_count (self, rh):
return rh.count ()

def compare_count (self, rh):
return rh.compcount

5.7 Stratall

The stratall module provides a new strategy, called ‘all’. This strategy
always returns a full list of headwords from the database, no matter what
the actual search word is.

To load this strategy, use the following configuration statement:
load—-module stratall;

Using this strategy on a full set of databases (‘MATCH * all ""’) pro-
duces enormous amount of output, which may induce a considerable strain
on the server, therefore it is advised to block such usage as suggested in
Section 4.3.13 [Strategies and Default Searches]|, page 35:

strategy all {
deny-all yes;
}

5.8 Substr

The substr module provides a ‘substr’ search strategy. This strategy
matches a substring anywhere in the keyword. For example:

C: MATCH eng-deu substr orma

152 207 matches found: list follows
: eng-deu "abnormal"

: eng-deu "conformable"

: eng-deu "doorman"

: eng-deu "format"

N wnnunnn

The loading procedure expects no arguments:
load—-module substr;

5.9 Word
The word module provides the following strategies:

word Match separate words within headwords.

Chapter 5: Modules 67

first Match the first word within headwords.
last Match the last word within headwords.

The initialization procedure loads all three if given no arguments, as in
load—-module word;

If arguments are given, the initialization procedure loads only those
strategies that are listed in its command line. For example, the statement
below loads only ‘first’ and ‘last’ strategies:

load-module word {
command "word first last";

}

The following is an example of using one of those strategies in a dico
session:
C: MATCH devdict word government
152 1 matches found: list follows
: devdict "MONARCHICAL GOVERNMENT"

0 nnwn

: 2560 Command complete

5.10 Nprefix

The nprefix module provides a strategy similar to ‘prefix’, but which
returns the specified range of bytes. For example, the statement

MATCH dict nprefix skip#count#string

where skip and count are positive integer numbers, returns at most count
headwords whose prefix matches string, omitting first skip unique matches.

The entire ‘skip#count#’ construct is optional. If not supplied, the
‘nprefix’ strategy behaves exactly as ‘prefix’.

The module is loaded using this simple statement:
load-module nprefix;

5.11 metaphone?2

The metaphone2 module provides a strategy based on Double Metaphone
phonetic encoding algorithm, published by Lawrence Philips.

The module is normally loaded as follows:
load-module metaphone2;
The only available initialization parameter is

size number [metaphone2 parameter]
Defines the size of computed Double Metaphone codes, in characters. The
default is 4.
load-module metaphone2 {
command "metaphone2 size=16";

}

68 GNU Dico Manual

5.12 Pcre

The pcre module provides a matching strategy using Perl-compatible regular
expressions. The module is loaded using a simple statement:

load-module pcre;

The strategy has the same name as the module and is reflected in the
server’s HELP output as shown below:

pcre '"Match using Perl-compatible regular expressions"

The headword argument to the pcre MATCH statement should be a valid
Perl regular expression. It can optionally be enclosed in a pair of slashes,
in which case one or more of the following flags can appear after the closing
slash:

a The regexp is anchored, that is, it is constrained to match only
at the first matching point in the string that is being searched.

e Ignore whitespace and ‘#’ comments in the expression.
Ignore case when matching.

G Inverts the greediness of the quantifiers so that they are not
greedy by default, but become greedy if followed by ‘?’. The
same can also be achieved by setting the ‘(?U)’ option within
the pattern.

Any of these flags can also be used in reverted case, which also reverts
its meaning. For example, ‘I’ means case-sensitive matching.
Here is an example of using this strategy in a dico session:
MATCH ! pcre "/\\stext/i"

5.13 Ldap

The 1dap module loads the support for LDAP user databases. It is available
if Dico has been configured with LDAP.

The module needs no additional configuration parameters:
load-module ldap;
See Section 4.3.3.2 [Idap userdb], page 19, for a description of its use.

5.14 pam

The pam module implements user authentication via PAM. It can be used
only with ‘LOGIN’ and ‘PLAIN’ GSASL authentication methods.
The module is loaded as follows:
load-module pam {
command "pam [service=sname]";

}
where sname is the name of PAM service to use. If not supplied, ‘dicod’
service will be used.

Chapter 5: Modules 69

The user database is normally initialized as:
user-db "pam://localhost";
If password-resource statement is given, its value will be used as service
name, instead of the one specified in the load-module statement, e.g.:

user-db "pam://localhost" {
password-resource "local";
}
The group-resource statement is not used, because there is no mecha-
nism to return textual data from PAM.

Chapter 6: Dico Module Interface 71

6 Dico Module Interface

This chapter describes the API for Dico loadable modules.

6.1 dico_database_module

Each module must export exactly one symbol of type struct dico_
database_module. This symbol must be declared as

DICO_EXPORT (name, module)

where name is the name of the module file (without suffix). For example, a
module word.so would have in its sourse the following declaration:

struct dico_database_module DICO_EXPORT(word, module) = {

s
The dico_database_module has the following members:
unsigned dico_version [dico_database_module]

Interface version being used. It is recommended to use the macro DICO_
MODULE_VERSION, which keeps the version number of the current interface.

unsigned dico_capabilities [dico_database_module]
Module capabilities. As of version 2.10, this member can be one of the
following:

DICO_CAPA_DEFAULT
This module defines a handler for a specific database format.

DICO_CAPA_NODB
This module does not handle any databases. When this capa-
bility is specified, dicod will call only the dico_init member
of the structure.

This capability is used by modules defining new matching
strategies or authentication methods.

int dico_init (int argc, char **argv) [Dico Callback]
This callback is called right after loading the module. It is responsible
for module initialization. The arguments are:

argc Number of elements in argv.

argv The command line given by command configuration statement
(see Section 4.3.11 [Handlers|, page 28), split into words. The
element argv[0] is the name of the module. The element
argvlargc] is ‘NULL’. Word splitting follows the rules similar
to those used in shell. In particular, a quoted string (using
both single and double quotes) is handled as a single word.

If dico_capabilities is DICO_CAPA_DEFAULT, this method is optional. If
dico_capabilities is set to DICO_CAPA_NODB, dico_init is mandatory
and must be the only method defined.

72 GNU Dico Manual

dico_handle_t dico_init_db (const char *db, int [Dico Callback]
argc, char **argv)
Initialize the database. This method is called as a part of database initial-
ization routine at startup of dicod, after processing dictionary configu-
ration statement (see Section 4.3.12 [Databases|, page 30). Its arguments
are:

db The name of the database, as given by the name statement.

argc Number of elements in argv.

argv The command line given by handler configuration statement
(see Section 4.3.12 [Databases], page 30). The array is ‘NULL’-
terminated.

This method returns a database handle, an opaque structure identifying
the database. This handle will be passed as the first argument to other
methods. On error, dico_init_db shall return NULL.

Notice, that this function is not required to actually open the database,
if the ‘open’ notion is supported by the underlying mechanism. Another
method, dico_open is responsible for that.

int dico_free_db (dico_handle_t dh) [Dico Callback]
Reclaim any resources associated with database handle dh. This method
is called as part of exit cleanup routine, before the main dicod process
terminates.

It shall return ‘0’ on success, or any non-‘0’ value on failure.

int dico_open (dico_handle_t dh) [Dico Callback]
Open the database identified by the handle dh. This method is called as
part of child process initialization routine.

It shall return ‘0O’ on success, or any non-‘0’ value on failure.
The dico_open method is optional.

int dico_close (dico-handle_t dh) [Dico Callback]
Close the database identified by the handle dh. This method is called as
part of child process termination routine.

It shall return ‘0’ on success, or any non-‘0’ value on failure.

The dico_close method is optional, but if dico_open is defined, dico_
close must be defined as well.

char * dico_db_info (dico_handle_t dh) [Dico Callback]
Return a database information string for the database identified by dh.
This function is called on each SHOW INFO command, unless an infor-
mational text for this database is supplied in the configuration file (see
Section 4.3.12 [Databases|, page 30). This value must be allocated using
malloc(3). The caller is responsible for freeing it when no longer needed.

This method is optional.

Chapter 6: Dico Module Interface 73

char * dico_db_descr (dico_handle_t dh) [Dico Callback]
Return a short database description string for the database identified by
dh. This function is called on each SHOW DB command, unless a description
for this database is supplied in the configuration file (see Section 4.3.12
[Databases], page 30). This value must be allocated using malloc(3). The
caller is responsible for freeing it when no longer needed.

This method is optional.

dico_result_t dico_match (dico_handle_t dh, [Dico Callback]
const dico_strategy_t strat, const char *word)
Use the strategy strat to search in the database dh, and return all head-
words matching word.

This method returns a result handle, an opaque pointer that can then be
used to display the obtained results. It returns NULL if no matches were
found.

dico_result_t dico_define (dico_handle_t dh, [Dico Callback]
const char *word)
Find definitions of headword word in the database identified by dh.

This method returns a result handle, an opaque pointer that can then be
used to display the obtained results. It returns NULL if no matches were
found.

int dico_output_result (dico_result_t rp, size_t n, [Dico Callback]
dico_stream_t str)

The dico_output_result method outputs to stream str the nth result
from result set rp. The latter is a result handle, obtained from a previous
call to dico_match or dico_define.
Returns ‘0’ on success, or any non-‘0’ value on failure.
It is guaranteed that the dico_output_result callback is called as many
times as there are elements in rp (as determined by the dico_result_
count callback, described below) and that for each subsequent call the
value of n equals its value from the previous call incremented by one.
At the first call n equals 0.

size_t dico_result_count (dico_result_t rp) [Dico Callback]
Return the number of distinct elements in the result set identified by rp.
The latter is a result handle, obtained from a previous call to dico_match
or dico_define.

size_t dico_compare_count (dico-result_t rp) [Dico Callback]
Return the number of comparisons performed when constructing the re-
sult set identified by rp.

This method is optional.
void dico_free_result (dico_result_t rp) [Dico Callback]

Free any resources used by the result set rp, which is a result handle,
obtained from a previous call to dico_match or dico_define.

74 GNU Dico Manual

int dico_result_headers (dico_result_t rp, [Dico Callback]
dico_assoc_list_t hdr)
Populate associative list hdr with the headers describing result set rp.
This callback is optional. If defined, it will be called before outputting
the result set rp if OPTION MIME is in effect (see Section B.2.4 [OPTION],
page 108).

int dico_run_test (int argc, char **argv) [Dico Callback]
Runs unit tests for the module. Argument vector contains all command
line arguments that follow the ——runtest option, up to the ‘-’ marker

or end of line, whichever is encountered first.

6.2 Strategies

A search strategy is described by the following structure:
struct dico_strategy {

char *name; /* Strategy name */

char *descr; /* Strategy description */
dico_select_t sel; /* Selector function */

void *closure; /* Additional data for SEL */

int is_default; /* True, if this is a default strategy */

dico_list_t stratcl; /* Strategy access control list */
};
The first two members are mandatory and must be defined for each strat-
egy:

char * name [member of struct dico_strategy]
Short name of the strategy. It is used as second argument to the MATCH
command (see Section B.2.2 [MATCH], page 106) and is displayed in the
first column of output by the SHOW STRAT command (see Section B.2.3
[SHOW], page 107).

char * descr [member of struct dico_strategy]
Strategy description. It is the string shown in the second column of SHOW
STRAT output (see Section B.2.3 [SHOW], page 107).

dico_select_t sel [member of struct dico_strategy]
A selector function, which is used in iterative matches to select matching
headwords. The sel function is called for each headword in the database
with the headword and search key as its arguments and returns 1 if the
headword matches the key and 0 otherwise. The dico_select_t type is
defined as:

typedef int (xdico_select_t) (int, dico_key_t,
const char *);

See Section 6.2.2 [Selector], page 76, for a detailed description.

void * closure [member of struct dico_strategy]
An opaque data pointer intended for use by the selector function.

Chapter 6: Dico Module Interface 75

int is_default [member of struct dico_strategy]
This member is set to 1 by the server if this strategy is selected as the
default one (see [default strategy], page 4).

dico_list_t stratcl [member of struct dico_strategy]
A control list associated with this strategy. See Section 4.3.13 [Strategies
and Default Searches], page 35.

6.2.1 Search Key Structure

The dico_key_t is defined as a pointer to the structure dico_key:

struct dico_key {
char *word;
void *call_data;
dico_strategy_t strat;
int flags;

};

The structure represents a search key for matching algorithms. Its mem-
bers are:

char * word [member of struct dico_key]
The search word or expression.

void * call_data [member of struct dico_key]
A pointer to selector-specific data. If necessary, it can be initialized by
the selector when called with the ‘DICO_SELECT_BEGIN’ opcode and deal-
located when called with the ‘DICO_SELECT_END’ opcode.

dico_strategy_t strat [member of struct dico_key]
A pointer to the strategy structure.

int flags [member of struct dico_key]
Key-specific flags. These are used by the server.

The following functions are defined to operate on search keys:

int dico_key_init (struct dico_key *key, dico_strategy_t [function]
strat, const char *word)
Initialize the key structure key with the given strategy strat and search
word word. If strat has a selector function, it will be called with the
‘DICO_SELECT_BEGIN’ opcode (see Section 6.2.2 [Selector|, page 76) to
carry out the necessary initializations.

The key itself may point to any kind of memory storage.

void dico_key_deinit (struct dico_key *key) [function]
Deinitialize the dico_key structure initialized by a prior call to dico_
key_init. If the key strategy has a selector, it will be called with the
‘DICO_SELECT_END’ opcode.

76 GNU Dico Manual

Note that this function makes no assumptions about the storage type
of key. If it points to a dynamically allocated memory, it is the caller
responsibility to free it.

int dico_key_match (struct dico_key *key, const char [function]
*word)
Match headword and key. Return 1 if they match, 0 if they don’t match
and -1 in case of error. This function calls the strategy selector with the
‘DICO_SELECT_RUN’ opcode (see Section 6.2.2 [Selector|, page 76). It is
an error if the strategy selector is not defined.

6.2.2 Strategy Selectors

Wherever possible, modules should implement strategies using effective look
up algorithms. For example, ‘exact’ and ‘prefix’ strategies must normally
be implemented using binary search in the database index. The ‘suffix’
strategy can also be implemented using binary search if a special reverse
index is built for the database (this is the approach taken by outline and
dictorg modules).

However, some strategies can only be implemented using a relatively ex-
pensive iteration over all keys in the database index. For example, ‘soundex’
and ‘levenshtein’ strategies cannot be implemented otherwise.

A strategy that can be used in iterative look ups must define a selector.
Strategy selector is a function which is called for each database headword to
determine whether it matches the search key.

It is defined as follows:

int select (int opcode, dico_key_t key, const char [selector]
*headword)
A strategy selector. Its arguments are:
opcode The operation code. Its possible values are
‘DICO_SELECT_BEGIN’, ‘DICO_SELECT_RUN’ and

‘DICO_SELECT_END’, as described below.
key The search key.
headword The database headword.

The selector function is called before entering the iteration loop with
‘DICO_SELECT_BEGIN’ as its argument. If necessary, it can perform any addi-
tional initialization of the strategy, such as allocation of auxiliary data struc-
tures, etc. The call_data member of dico_key_t structure (see [dico_key],
page 75) should be used to keep the pointer to the auxiliary data. The func-
tion should return 0 if it successfully finished its initialization and non-zero
otherwise.

Once the iteration loop is finished, the selector will be called with
‘DICO_SELECT_END’ as its first argument. This invocation is intended to

Chapter 6: Dico Module Interface 77

deallocate any auxiliary memory and release any additional resources allo-
cated at the initialization state.

In these two additional invocations, the headword parameter will be
‘NULL’.

Once the iteration loop is entered, the selector function will be called for
each headword. Its opcode parameter will be ‘DICO_SELECT_RUN’ and the
headword parameter will point to the headword. The function should return
1 if the headword matches the key, 0 if it does not and a negative value in
case of failure.

To illustrate the concept of strategy selector, let’s consider the imple-
mentation of the ‘soundex’ strategy in dicod. This strategy computes a
four-character soundex code for both search key and the headword and re-
turns 1 (match) if both codes coincide. To speed up the process, the code for
the search key is computed only once, at the initialization stage, and stored
in a temporary memory assigned to the key->call_data. This memory is
reclaimed at the terminating call:

int
soundex_sel(int cmd, dico_key_t key, const char *dict_word)
{

char dcode[DICO_SOUNDEX_SIZE];

switch (cmd) {
case DICO_SELECT_BEGIN:
key->call_data = malloc(DICO_SOUNDEX_SIZE);
if (l'key->call_data)
return 1;
dico_soundex(key->word, key->call_data);
break;

case DICO_SELECT_RUN:
dico_soundex(dict_word, dcode);
return strcmp(dcode, key->call_data) == 0;

case DICO_SELECT_END:
free(key->call_data);
break;

}

return O;

6.3 Output

The dico_output_result method is called when the server needs to output
the result of a ‘define’ or ‘match’ command. It must be defined as follows:

int output_result (dico_result_t rp, size_t n,

78 GNU Dico Manual

dico_stream_t str);

The rp argument points to the result in question. From the server’s point
of view it is an opaque pointer. The application shall define its own result
structure, so normally the first operation the dico_output_result method
does is typecasting rp to a pointer to that structure in order to be able to
access its members.

A result can conceptually contain several parts. For example, the result
of a ‘DEFINE’ command can contain several definitions of the term. Similarly,
the result of ‘MATCH’ contains one or more matches. The server obtains the
exact number of parts in a result by calling the dico_result_count method
(see [dico_result_count], page 73).

When outputting a result, the server calls the dico_output_result in a
loop, once for each result part. It passes the ordinal (zero-based) number of
the part that needs to be output in the n parameter. It is guaranteed that n
increases by one for each subsequent call of dico_output_result with the
same rp parameter.

The str parameter identifies the output stream. The dico_output_
result function must format the requested part from the result and output
it to that stream. To do so it should use one of the following functions:

int dico_stream_write (dico_stream_t str, const void [Function]
*buf, size_t count)
Writes count bytes from the buffer pointed to by buf to the output stream
str. Returns 0 on success, and non-zero on error.

int dico_stream_writeln (dico_stream_t str, const [Function]
char *buf, size_t size)

Same as dico_stream_write, but ends the output with a newline char-
acter (ASCII 10).

6.4 Module Unit Testing

The dico_run_test member of struct dico_database_module (see
Section 6.1 [dico_database_module], page 71) points to the function that
serves as entry point for unit tests of that module. If it is NULL, the
module does not support unit testing. Otherwise, unit tests can be run
using the following command line syntax:

$ dicod --runtest module [test_args] [-- init_args]

As usual, square brackets denote optional parts. The module argument
specifies the name of the module to test. The arguments that follow the
--runtest (-r) option are collected into two arrays: arguments up to the

3)

--" marker form the vector that is passed to the module’s dico_run_test
function. The ‘==’ marker is optional. If present, arguments that follow it
are collected into a separate argument vector starting from slot 1, the slot 0
is set to point to the module name and the resulting vector is passed to the

dico_init method of the module.

Chapter 6: Dico Module Interface 79

When running unit tests, configuration file is ignored. The diagnostic
messages are printed to the standard error output.
Use the --load-dir (-L) command line option, if the module being tested
cannot be found in the default load path (see [load path], page 29), e.g.:
$ dicod -L ../1lib --runtest metaphone2 build A B C

Chapter 7: Dico — a client program. 81
7 Dico — a client program.

The dico program is a console-based utility for querying dictionary servers.
It has two operation modes. In single query mode, the utility performs
a query, displays its result and exits immediately. This mode is entered
if a word or a URL was given in the command line. In interactive mode,
the utility enters a read-and-eval loop, in which it reads requests from the
keyboard, performs the necessary searches, and displays obtained results on
the screen.

7.1 Single Query Mode

The simplest way to use dico utility is to invoke it with a word as an
argument, e.g.:

$ dico entdeckung

In the example above, the utility will search definitions of the word
‘entdeckung’ using its default server name and database. The default server
name is read from the initialization file (see Section 7.3 [Initialization File],
page 91). If it is not present, a predefined value specified at configuration
time (see Section 3.2 [Default Server], page 7) is used. The default database
is ‘1", which means “search in all available databases until a match is found,
and then display all matches in that database”.

There are two ways to change these defaults. First, you can use command
line options. Secondly, you can use a DICT URL. Which method to use
depends on your preferences. Both methods provide the same functionality
for querying word definitions. However, command line options allow the user
to query additional data from the server, which is impossible using URLs.

7.1.1 Dico Command Line Options
To connect to a particular dictionary server, use the —--host option, for
example:

$ dico --host dico.org entdeckung

To search in a particular database, use the --database (-d) option. For
example, to display definitions from all databases:

$ dico --database ’*’ entdeckung
Note single quotes around the asterisk.

To get a list of databases offered by the server, use the --dbs (-D) option.
In this case you may not give any non-option arguments. For example:
$ dico --dbs
If you wish to get a list of matches, instead of definitions, use the —-match
(-m) option. For example, the following invocation will display all matches
from all the databases:

$ dico --database ’*’ --match entdeckung

82 GNU Dico Manual

The match mode uses ‘.’ strategy by default (see Section B.2.2 [MATCH],
page 106), which means a server-dependent default strategy, which suits best
for interactive spell checking. To select another strategy, use the --strategy
(-s) option.

If the remote server supports ‘xlev’ experimental capability (see
Section B.3 [Extended Commands|, page 110, you may use the --levdist
(--levenshtein-distance) option to set maximum Levenshtein distance,
for example:

$ dico --levdist 2 --match entdeckung

Note that setting the distance too high is impractical and may imply
unnecessary strain on the server.

To get a list of available matching strategies, with descriptions, use the
--strategies (-S) option.

7.1.2 DICT URL

Another way to specify data for a query is by using URL, instead of a word
to search, as in the example below:

$ dico dict://gnu.org.ua/d:entdeckung
A DICT URL consists of the following parts:

dict://user;pass@host:port/d:word:database:n
dict://user;pass@host:port/m:word:database:strat:n
The ‘/d’ syntax requests the definition of word, whereas the ‘/m’ syn-
tax queries for matches, and is similar to the —-match option. Some or
all of ‘user;pass@’, ‘:port’, database, strat, and and n may be omitted.
The meaning of all URL parts and their default values (if appropriate) are
explained in the table below:

user The user name to use in authentication. Similar to the --user
option. If user is omitted and cannot be retrieved by other
means, no authentication is attempted. See Section 7.4 [Au-
tologin|, page 92, for a detailed description of authentication
procedure and sources which are used to obtain authentication
credentials.

pass A shared key (password) for that user. This part is similar to
the --key command line option.
For compatibility with other URLs, dico tolerates a colon (in-
stead of semicolon) as a delimiter between user and pass.
If user is given, but pass is not, dico will ask you to supply a
password interactively (see Section 7.4 [Autologin], page 92).

host Host name, IPv4 address, or IPv6 address (in square brackets) of
the server to query. Same as the —-host command line option.

port Port number or service name (from /etc/services). If it is not
present, the default of 2628 is used.

Chapter 7: Dico — a client program. 83

Same as the -—-port command line option.

word The word to look for.

4

database The database to search in. If not given, ‘!’ is assumed.

Same as the --database command line option.

strat The matching strategy to use. If omitted, ‘.’ is assumed.
Same as the --strategy command line option.

n Extract and display the nth definition of the word. If omitted,
all definitions are displayed.

There is no command line option equivalent for this parameter,
because it is used rarely.

Trailing colons may be omitted. For example, the following URLs might
specify definitions or matches:

dict://dict.org/d:shortcake:
dict://dict.org/d:shortcake:*
dict://dict.org/d:shortcake:wordnet:
dict://dict.org/d:shortcake:wordnet:1
dict://dict.org/d:abcdefgh
dict://dict.org/d:sun
dict://dict.org/d:sun::1
dict://dict.org/m:sun
dict://dict.org/m:sun: :soundex
dict://dict.org/m:sun:wordnet::1
dict://dict.org/m:sun::soundex:1
dict://dict.org/m:sun:::

7.2 Interactive Mode

If neither word nor URL nor any operation mode option were given on the
command line, dico enters interactive mode. In this mode it reads com-
mands from the standard input, executes them and displays results on the
standard output. If the standard input is connected to a terminal, the read-
line and history facilities are enabled (see Section “Command Line Editing”
in GNU Readline Library).

When in interactive mode, dico displays its prompt and waits for you to
enter a command. The default prompt is the name of the program, followed
by a ‘greater than’ sign and a single space:

dico> _

The input syntax is designed so as to save you the maximum amount of
typing.

If you type any word, the default action is to look up its definition using
the default server and database settings, for example:

84 GNU Dico Manual

dico> man
From eng-swa, English-Swahili xFried/FreeDict Dictionary:
man <n.>

mwanamume
To match the word, instead of defining it, prefix it with a slash, much as
you do in vi:

dico> /man
From eng-swa, English-Swahili xFried/FreeDict Dictionary:

0) ‘‘can’’
1) “‘man’’
2) ‘‘many’’
3) ‘‘map’’
4) ‘‘may’’
5) “‘men’’

Displayed is a list of matches retrieved using the default strategy. To see
a definition for a particular match, type the number shown at its left. For
example, to define “men”:
dico> 5
From eng-swa, English-Swahili xFried/FreeDict Dictionary:
men <n.>

wanaume

Define and match are two basic actions. To discern from them, the rest
of dico commands begin with a command prefix, a single punctuation char-
acter selected for this purpose. The default command prefix is a dot, but it
can be changed using the prefix command (see Section 7.2.8 [Other Com-
mands|, page 89).

We will discuss the dico commands in the following subsections.

7.2.1 Server Commands

The open command establishes connection to a remote server. It takes up
to two arguments, first of them specifying the IP or host name of the server,
and the optional second one specifying the port number to connect to. For
example:
dico> .open gnu.org.ua

If any or both of its arguments are absent, the open command reuses
the value supplied with its previous invocation, or, if it is issued for the first
time, the default values. The default for server name is ‘gnu.org.ua’ and the
default port number is 2628. Both values can be changed at configuration
time, see Section 3.2 [Default Server|, page 7 for a detailed instruction.

When given one argument, open checks if it begins with a directory sep-
arator (‘/7). If so, the argument is handled as the full file name of a UNIX
socket.

Chapter 7: Dico — a client program. 85

Note that you are not required to issue this command. If it is not given,
dico will attempt to establish a connection using its default settings before
executing any command that requires a connection to the server.

The close command closes the connection. It does not take any argu-
ments.

7.2.2 Database and Strategy

The database command changes or displays the database name which is
used by define and match commands. To display the database name, type
the command without arguments:

dico> .database
!

To change the database, give its name as an argument to the command:
dico> .database *

Once the connection with the server is established, you may use command
line completion facility to select the database from among those offered by
the server. Typing TAB will show you a list of databases that begin with the
characters you typed:

dico> .database enTAB
en-pl-naut eng-afr eng-deu eng-swa

If you supply enough characters to identify a single choice, TAB will au-
tomatically select it. In the example above, typing a TAB after

dico> .database en-
completes the database name to:
dico> .database en-pl-naut

The strategy command displays or changes the default strategy name.
As with database, the strategy completion is available for this command.

dico> .strategy

dico> .strategy dlev

If the remote server supports ‘xlev’ experimental capability (see
Section B.3 [Extended Commands], page 110), you can use the distance
command to set the maximum Levenshtein distance for strategies that use
Levenshtein algorithm. If used without arguments, this command displays
the distance reported by the server and the configured distance, e.g.:

dico> .distance
Reported Levenshtein distance: 1
No distance configured

If used with a single numeric argument, it attempts to set the distance
to the supplied value.

86 GNU Dico Manual

7.2.3 Informational Commands

The 1s command lists available strategies (see Section B.2.3 [SHOW],
page 107):

dico> .1s

exact "Match words exactly"

prefix "Match word prefixes"

soundex "Match using SOUNDEX algorithm"

all "Match everything (experimental)"

lev "Match headwords within given Levenshtein distance"

dlev "Match headwords within given Damerau-Levenshtein

distance"

re "POSIX 1003.2 (modern) regular expressions"

regexp "01d (basic) regular expressions"

suffix "Match word suffixes"

rev-qu "Reverse search in Quechua databases"

The 1d command lists available databases (see Section B.2.3 [SHOW],
page 107):
dico> .1d
eng-swa "English-Swahili xFried/FreeDict Dictionary"
swa-eng "Swahili-English xFried/FreeDict Dictionary"
afr-eng "Afrikaans-English FreeDict Dictionary"
eng-afr "English-Afrikaans FreeDict Dictionary"

The info command displays information about a database, whose name
is given as its argument. If used without arguments, it displays information
about the current database

dico> .info pl-en-naut
pl-en-naut - A Polish-English dictionary of nautical terms.
Copyright (C) 2008 Sergey Poznyakoff

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover and Back-Cover Texts.

7.2.4 History Commands

Each issued command is stored in a history list and assigned a unique event
number. When dico exits, it saves the command history to a file named
.dico_history in your home directory. Upon startup, it retrieves the his-
tory from this file, so the history is preserved between sessions.

You can view the command history using the history command:

dico> .history
1) .open dict.org
2) entdeckung

Chapter 7: Dico — a client program. 87

3) /geschwindigkeit

A number of editing commands is provided, that allow you to refer to
previous events from the history list and to edit them. For example, to re-
issue the 3rd event from the above list, type ‘!3’. The command with this
index will be inserted at the dico prompt and you will be given a possibility
to edit it. For a detailed description of all history-editing commands, please
refer to Section “Using History Interactively” in GNU History User Manual.

7.2.5 Pager

When a command produces output that contains more lines than there are
rows on the terminal, dico attempts to use a pager program to display it.
The name (and arguments) of the pager program are taken from the dico
internal variable, or, if it is not set, from the PAGER environment variable.

The dico pager setting can be examined or changed using the pager
command. When used without arguments, it displays the current setting:

dico> .pager
less
(Pager set from environment)

When used with a single argument, it sets the pager:
dico> .pager "less -R"

The argument ‘=’ (a dash) disables pager.

7.2.6 Program Settings

The commands described in this subsection are designed mostly for use in
dico initialization file (see Section 7.3 [Initialization File], page 91).

The autologin command sets the name of autologin file to be used for
authentication. When used without arguments, it displays the current set-
ting. The argument to autologin command is subject to tilde expansion,
i.e. if it begins with ‘~/’, this prefix is replaced with the name of the current
user home directory, followed by ‘/’. Similarly, a prefix ‘“1ogin/’ is replaced
by the home directory for user login, followed by a slash.

See Section 7.4 [Autologin|, page 92, for a detailed discussion of the au-
tologin feature.

The quiet command toggles the display of dico startup banner. When
started, dico prints a short list of information useful for beginning users:
the program version and warranty conditions and a command to get help,

e.g.

88 GNU Dico Manual

dico 2.10

Copyright (C) 2005-2016 Sergey Poznyakoff

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type 7 for help summary

dico>

If you find this output superfluous and useless, you can suppress it by
setting

quiet yes

in your initialization file.

7.2.7 Session Transcript

Session transcript is a special mode, which displays raw DICT commands
and answers as they are executed. It is useful for debugging purposes.

You enable session transcript by issuing the following command:

dico> .transcript yes
or
dico> .transcript on

Starting from then, each DICT transaction will be displayed on standard
error output, for example:

dico> .open

dico: Debug: S:220 Pirx.gnu.org.ua dicod (dico 2.10)
<mime.xversion.xlev> <32004.1216639476Q@gnu.org.ua>

dico: Debug: C:CLIENT "dico 1.99.91"

dico: Debug: S:250 ok

dico: Debug: C:SHOW DATABASES

dico: Debug: S:110 26 databases present

dico: Debug: S:.

dico: Debug: S:250 ok

dico: Debug: C:SHOW STRATEGIES

dico: Debug: S:111 10 strategies present: list follows
dico: Debug: S:exact "Match words exactly"

dico: Debug: S:prefix "Match word prefixes"

dico: Debug: S:soundex "Match using SOUNDEX algorithm"
dico: Debug: S:

dico: Debug: S:250 ok

Chapter 7: Dico — a client program. 89

In the example above, ellipses are used to replace long lists of data. As
you see, session transcripts may produce large amount of output.
To turn the session transcript off, use the following command:
dico> .transcript no
or
dico> .transcript off
Finally, to query the current state of session transcript, issue this com-
mand without arguments:
dico> .transcript
transcript is on

7.2.8 Other Commands

The prefix command queries or changes the current command prefix:
dico> .prefix
Command prefix is .
dico> .prefix @
dico> @prefix
Command prefix is @
The prompt command changes the dico command line prompt. For
example, to change it to ‘dico$’, followed by a single space, type:
dico> .prompt "dico$ "
dico$ _
Note the use of quotes to include the space character in the argument.

The help command displays a short command usage summary. For con-
venience, a single question mark can be used instead of it:

dico> 7

/WORD Match WORD.

/ Redisplay previous matches.
NUMBER Define NUMBERth match.

INUMBER Edit NUMBERth previous command.
.open [HOST [PORT]] Connect to a DICT server.
.close Close the connection.

The version command displays the package name and version number,
and the warranty command displays the copyright statement.

Finally, the quit command leaves the dico shell. Typing end-of-file char-
acter (C-d) has the same effect.

7.2.9 Dico Command Summary

For convenience, this subsection lists all available dico commands along with
their short description and a reference to the part of this manual where they
are described in detail. The command names are given without prefix.

90 GNU Dico Manual

open host port
Connect to a DICT server. Both arguments are optional. If any
of them is absent, the value supplied with the previous open
command is used. If there was no previous value, the default is
used, i.e., ‘gnu.org.ua’ for host, and 2628 for port.

See Section 7.2.1 [Server Commands|, page 84.

close Close the connection.
See Section 7.2.1 [Server Commands], page 84.
autologin [file]
Set or display the autologin file name.
See Section 7.4 [Autologin], page 92.
sasl [bool]
Without argument, show whether the SASL authentication is

enabled. With argument, enable or disable it, depending on the
value of bool. See Section 7.4 [Autologin], page 92.

database [name]
Set or display the current database name.
See Section 7.2.2 [Database and Strategy], page 85.
strategy [name]
Set or display the current strategy name.
See Section 7.2.2 [Database and Strategy|, page 85.
distance [num]
Set or query Levenshtein distance. This command takes effect

only if the remote server supports ‘xlev’ experimental capability
(see Section B.3 [Extended Commands|, page 110).

See Section 7.2.2 [Database and Strategy|, page 85.

1s List available matching strategies.
See Section 7.2.3 [Informational Commands], page 86.

1d List all accessible databases.
See Section 7.2.3 [Informational Commands], page 86.

info [db] Display information about the database db, or the current data-
base, if used without argument.

prefix [c]

Set or display the command prefix.

See Section 7.2.8 [Other Commands]|, page 89.
transcript [booll

Set or display session transcript mode.

See Section 7.2.7 [Session Transcript], page 88.

Chapter 7: Dico — a client program. 91

verbose [number]
Set or display debugging verbosity level. Currently (as of version
2.10) it is a no-op.

prompt string

Change command line prompt.

See Section 7.2.8 [Other Commands], page 89.
pager string

Change or display pager settings.

See Section 7.2.5 [Pager|, page 87.

history Display command history.
See Section 7.2.4 [History Commands], page 86.

help Display short command usage summary.
See Section 7.2.8 [Other Commands], page 89.

version Print program version.
See Section 7.2.8 [Other Commands]|, page 89.

warranty Print copyright statement.
See Section 7.2.8 [Other Commands], page 89.

quiet bool
Toggle display of dico welcome banner. This command can be
used only in initialization file.

See Section 7.2.6 [Program Settings|, page 87.

quit Quit the shell.
See Section 7.2.8 [Other Commands], page 89.

7.3 Initialization File

When you start dico, it automatically executes commands from its initial-
ization files (or init files, for short), normally called .dico. Two init files are
read: the one located in your home directory, and the one from the current
working directory. It is not an error if any or both of these files are absent.

These files contain a series of dico commands, as described in Section 7.2
[Interactive Mode], page 83, with the only difference that no command prefix
is used by default. The ‘#’ character introduces a comment: any characters
from (and including) ‘#’ up to the newline character are ignored'.

Init files are useful to change the defaults for your dico invocation. Con-
sider, for example, this init file:

I The same holds true for interactive mode as well, but you will hardly need comments
on a terminal.

92 GNU Dico Manual

An example init file for dico

Turn the welcome banner off

quiet yes

Set the location of autologin file
autologin ~/.dicologin

Use this server by default

open dict.org

Search in all databases

database *

Finally, set the custom command prefix
prefix :

Notice, that if you wish to change your command prefix, it is preferable
to do it as a last command in your init file, as shown in this example.

7.4 Autologin

After connecting to a remote server, dico checks if the server supports au-
thentication and attempts to authenticate itself if so. To do this dico needs
a set of parameters called user credentials. The exact set of credentials de-
pends on the authentication mechanism being used, with user name and
password being the two most important ones.

The user credentials can be supplied from the following sources:
Command line options -—user and --password.

2. An URL given as a command line argument (see Section 7.1.2 [urls],
page 82).
3. Autologin files.

These three sources are consulted in that order, i.e., a user name supplied
with the -—user command line option takes precedence over the one found
in an URL and over any names supplied by autologin files.

If, after consulting all these sources, the user name is established, while
the password is not, the resulting action depends on whether the standard
input is connected to a terminal. If it is, dico will ask the user to supply a
password. If it is not, authentication is aborted and connection to the server
is closed.

Some authentication mechanisms require additional credentials. For ex-
ample, GSSAPI authentication requires a service name. These credentials
can be supplied only in autologin file.

Autologin file is a plaintext file that contains authentication information
for various DICT servers. At most two autologin files are consulted: first the
session-specific file, if it is supplied by autologin command (see Section 7.2.6
[Program Settings], page 87) or by the -—autologin command line option,
next the default file .dicologin in the user’s home directory. The default

Chapter 7: Dico — a client program. 93

autologin file is examined only if no matching record was found in the session-
specific one.

The autologin file format is similar to that of .netrc file used by ftp
utility.

Comments are introduced by a pound sign. Anything starting from ‘#’
up to the end of physical line is ignored.

Empty lines and comments are ignored.

Non-empty lines constitute statements. Tokens in a statement are sepa-
rated with spaces, tabs, or newlines. A valid statement must begin with one
of the following:

machine name
This statement contains parameters for authenticating on ma-
chine name.

default This statement contains parameters for authenticating on any
machine, except those explicitly listed in machine statements.
There can be at most one default statement in autologin file.
Its exact location does not matter, it will always be matched
after all explicit machine statements.

During the lookup, dico searches the autologin file for a machine state-
ment whose name matches the remote server name as given by —--host com-
mand line option, host part of an URL (see Section 7.1.2 [urls], page 82), or
the argument to the open command (see Section 7.2.1 [Server Commands],
page 84). If it reaches end of the file without having found such an entry, it
uses the default value, if available.

Once a matching entry is found, its subsequent tokens are analyzed. The
following tokens are recognized:

login name
Supply user name for this server.

password string
Supply a password.

noauth Do not perform authentication on this machine.
sasl Enable SASL authentication.
nosasl Disable SASL authentication.

mechanisms list
Declare acceptable SASL mechanisms. The list argument is a
comma-separated list of mechanism names, without intervening
whitespace. Multiple mechanisms may be given, in which case
the corresponding lists are concatenated.

service name
Declare service name, for authentication methods that need it.
If this token is omitted, the default service name ‘dico’ is used.

94 GNU Dico Manual

realm name
Declare realm for authentication.

host name Set host name for this machine. By default, it is determined
automatically.

Consider the following autologin entry, for example:
machine a.net user smith password guessme
machine b.net
sasl
mechanisms gssapi,digest-mdb
realm example.net
service dico
user smith password guessme
default noauth
When connecting to the server ‘a.net’, dico will attempt the usual APOP
authentication as user ‘smith’ with password ‘guessme’. When connecting
to the machine ‘b.net’, it will use SASL authentication, via either GSSAPI
or DIGEST-MD5 mechanisms, with realm name ‘example.net’, service name
‘dico’ and the same user name and password, as for ‘a.net’.
The authentication mechanism is suppressed if the -—noauth option has
been given in the command line, or a matching entry was found in one of
the autologin files, which contained the noauth keyword.

7.5 Dico invocation

This section contains a short summary of dico command line options.

Command Line
The following table summarizes the four existing ways of dico invocation:

dico [options] word
Connect to the dictionary and define or match a word.
See Section 7.1.1 [dico options|, page 81.

dico [options] url
Connect to the dictionary and define or match a word, supplied
in the url.

See Section 7.1.2 [urls], page 82.

dico [options] opmode
Connect to the dictionary and query the information required
by opmode option, which is one of --dbs, --strategies, —-
serverhelp, --info, or --serverinfo. See below (see [dico-
opmode|, page 95) for a description.

dico [options]
Start interactive shell. See Section 7.2 [Interactive Mode],
page 83.

Chapter 7: Dico — a client program. 95

Server selection options:

—--host=server
Connect to this server.

See Section 7.1.1 [dico options], page 81.

—-—port=port

-p port Specify the port to connect to. The argument port can be ei-
ther a port number or its symbolic service name, as listed in
/etc/services.

-—database=name

-d name Select a database to search. The name can be either a name of
one of the databases offered by the server (as returned by --dbs
option), or one of the predefined database names: ‘!’ or ‘*’.

See Section 7.1.1 [dico options|, page 81.

——-source=addr
Set source address for TCP connections.

Operation modifiers

—--match
-m Match instead of define.

See Section 7.1.1 [dico options], page 81.

--strategy=name

-S name Select a strategy for matching. The argument is either a name
of one of the matching strategies supported by server (as dis-
played by --strategies option) or a dot (‘.’) meaning a server-
dependent default strategy.

This option implies —-match.

See Section 7.1.1 [dico options], page 81.

-—levdist=n

-—levenshtein-distance=n
Sets maximum Levenshtein distance. Allowed values of n are
between 1 and 9 inclusively. This option has effect only if the
remote server supports ‘xlev’ extension (see Section B.3 [Ex-
tended Commands|, page 110).

See Section 7.1.1 [dico options|, page 81.
--quiet

-q Do not print the normal dico welcome banner when entering
interactive shell.

See Section 7.2.6 [Program Settings|, page 87.

96 GNU Dico Manual

Operation modes

--dbs
-D Show available databases.

See Section 7.1.1 [dico options|, page 81.
--strategies
-S Show available search strategies.

See Section 7.1.1 [dico options|, page 81.

—--serverhelp
-H Show server help.

—-info=dbname
-i dbname Show information about database dbname.

—--serverinfo
-1 Show information about the server.

Authentication
—--noauth
-a Disable authentication.
See Section 7.4 [Autologin], page 92.

--sasl Enable SASL authentication, if the server supports it. See
Section 7.4 [Autologin], page 92.

--nosasl Disable SASL authentication. See Section 7.4 [Autologin],
page 92.

--user=name

-u name Set user name for authentication.
See Section 7.4 [Autologin], page 92.

--key=string

-k string

--password=string
Set shared secret for authentication.

See Section 7.4 [Autologin], page 92.
--autologin=name

Set the name of autologin file to use.

See Section 7.4 [Autologin], page 92.
--client=string

-c string Additional text for client command, instead of the default ‘GNU
dico 2.10".

Chapter 7: Dico — a client program. 97

Debugging options

-—transcript
-t Enable session transcript. See Section 7.2.7 [Session Transcript],
page 88, for a description.

--verbose
-v Increase debugging verbosity level.

-—time-stamp
Include time stamp in the debugging output.
--source-info

Include source line information in the debugging output.

Other options

--help
-h Display a short description of command line options.

--usage Display a short usage message

--version
Print program version.

Chapter 8: GCIDER 99

8 GCIDER

Gecider is a window-based application for browsing the GNU Collaborative
International Dictionary of English (GCIDE). When started, it launches a
copy of dicod with a specially crafted configuration file and interfaces with
it via stdin/stdout. For operation it needs to know the location of the dicod
binary and of the directory where the GCIDE files reside. When started
for the first time it will present you with a dialog box to help it locate the
needed components. The location of the dicod binary is normally guessed
by scanning the PATH environment variable. The only parameter you need
to supply is the directory where the dictionary files reside. Once these data
are entered, the program will save them in its configuration file (located in
~/.gcider) and will reuse them in subsequent invocations.

The gcider user documentation is available online at http://dico.gnu.
org.ua/gcider.html.

The program display is organized in three areas, ordered vertically. The
topmost area is the menu bar, which contains pull-down menus. It is followed
by a search control area. It provides an input line for you to enter the term
to look-up in the dictionary, a set of widgets for bringing back prior inputs
from the history and for controlling the search types and matching strategies.
The area that follows presents two windows, side by side. The leftmost one
is the article window, where definitions of the search terms are shown. The
rightmost one is the match list, which will present the results of the recent
match command. Finally, at the very bottom of the gcider window is
located the status bar. Its purpose is twofold. First, it displays a status of
the last search. Secondly, it provides a terse contextual help describing what
you can do using the widget your mouse pointer points to.

To look up a word, type it in the input line in the search area and hit CR
or click on the ‘Define’ button. The definition, if found, is then displayed
in the article window. This text may contain cross-references to other words
in the dictionary, which are shown underlined, to draw your attention. To
define a cross-reference, click on it with your mouse. You can also define any
other word from the text. To do so, select it and click on the right button.
Then, in the menu that will appear, select ‘Define’.

If you are not sure about the exact spelling of your search term, try
searching for closest matches first. To do so, click on ‘Match’ instead of
‘Define’. To find closest matches for a word in a definition, select the
word (or part of it) and select ‘Match’ in the contextual menu. In both
cases, the program will try to match the word using the strategy selected
currently in the strategy widget at the right of the search control area.
Matching headwords will then be displayed in a listbox to the right of the
article window. Clicking on a headword will bring its definition to the article
window.

To select a match strategy, click on the strategy widget and select the
desired strategy in the pop-down list that will appear. The list contains

http://dico.gnu.org.ua/gcider.html
http://dico.gnu.org.ua/gcider.html

100 GNU Dico Manual

short strategy names. To help you select the right one, the status line will
show a full description of the currently highlighted strategy.

Those search terms for which a definition was found are saved in a history
list. Several ways are provided to retrieve definitions from that list. First,
clicking on the input widget brings a popdown list with all headwords from
the history list shown in a reverse chronological order. Selecting a word from
that list brings back its definition. Secondly, two special buttons to the right
of the input widget can be used to navigate through the history. The button
marked with a left arrow brings back previous definition, whereas the one
marked with a right arrow brings back next definition.

By default the history list can accommodate up to 500 search terms.
Once this limit reached, adding a new term to the list discards the oldest
item, so that the total list length remains the same. Actual length of the
history list can be configured using the Edit/Appearance menu.

Chapter 9: How to Report a Bug 101

9 How to Report a Bug

Email bug reports to bug-dico@gnu.org or bug-dico@gnu.org.ua. Please
include a detailed description of the bug and information about the condi-
tions under which it occurs, so we can reproduce it. To facilitate the task,
the following list shows the basic set of information needed in order to find
the bug:

Package version you use. The output of dicod --version will do.
A detailed description of the bug.
Conditions under which the bug appears.

It is often helpful to send the contents of config.log file along with
your bug report. This file is created after running ./configure in the
source root directory of GNU Dico.

mailto:bug-dico@gnu.org
mailto:bug-dico@gnu.org.ua

Appendix A: Available Strategies 103

Appendix A Available Strategies

This appendix summarizes search strategies available for use in Dico 2.10.

exact
prefix

nprefix

suffix

soundex

lev

nlev

dlev

Match words exactly. This is a built-in strategy.
Match word prefixes. This is a built-in strategy.

This strategy is similar to ‘prefix’, except that it allows the
user to limit the number of returned matches. If the search term
has the structure ‘skip#count#string’, where skip and count
are integer numbers, then the ‘nprefix’ strategy will return at
most count headwords that begin with string, omitting first skip
unique matches.

This strategy is implemented in the nprefix loadable module.
See Section 5.10 [nprefix|, page 67.

Match word suffixes. This is a built-in strategy.

Match words using SOUNDEX algorithm!. This strategy
matches headwords that sound approximately the same as the
search term. Note, that it is suitable only for English words.

This is a built-in strategy.

Match headwords within given Levenshtein distance (1 by de-
fault). This strategy accounts for the most usual spelling errors.

The Levenshtein distance between two strings is the minimum
number of edits needed to transform one string into the other.
The edits are: insertion, deletion, or substitution of a single
character. Thus, Levenshtein distance 1 means that only one
such operation suffices to convert one string to another. This is
the default for that strategy.

This built-in strategy is used as a default one (see [default strat-
egy|, page 4), unless the default-strategy configuration state-
ment mandates otherwise.

The dictionary server may optionally allow users to alter the
Levenshtein distance using the extension command XLEV. This
command is enabled by setting the ‘xlev’ capability. See
Section 4.3.10 [Capabilities|, page 28, for a detailed description.

Match normalized headwords within given Levenshtein distance.
This strategy is similar to ‘lev’, except that it treats any run-
length of whitespace characters appearing in a headword as a
single space (ASCII 32) character.

Match headwords within given Damerau-Levenshtein distance
(1 by default).

1 See http://en.wikipedia.org/wiki/Soundex

http://en.wikipedia.org/wiki/Soundex

104

ndlev

re

regexp

pcre

all

substr

word

first

last

GNU Dico Manual

The Damerau-Levenshtein distance extends the Levenshtein dis-
tance by an additional edit operation: transposition of two ad-
jacent characters.

This strategy is similar to ‘lev’, but covers a much wider range
of spelling and typographical errors.

The distance threshold optionally be configured using the XLEV
command (see Section 4.3.10 [Capabilities], page 28).

This is the same as ‘dlev’, except that it treats any runlength of
whitespace characters appearing in a headword as a single space
(ASCII 32) character.

Match using POSIX 1003.2 regular expressions. This strategy
treats the search term as a regular expression (see Section “Ex-
tended regular expressions” in GNU sed).

Match using basic regular expressions.

Match using Perl-compatible regular expressions. This strategy
is implemented in the loadable module pcre. See Section 5.12
[pcre], page 68.

Match everything. This experimental strategy ignores its ar-
gument and matches all headwords. It is implemented in the
stratall module, which you must load if you wish to make
that strategy available. See Section 5.7 [stratall], page 66.

Match a substring anywhere in the headword. This strategy
is implemented as a loadable module. See Section 5.8 [substr],
page 66.

Match a word anywhere in the headword. This is one of the
strategies provided by the word loadable module. See Section 5.9
[word], page 66.

Match the first word within headwords. This strategy is im-
plemented in word loadable module. See Section 5.9 [word],
page 66.

Match the last word within headwords. This strategy is im-
plemented in word loadable module. See Section 5.9 [word],
page 66.

Appendix B: Dictionary Server Protocol 105

Appendix B Dictionary Server Protocol

This appendix describes commands understood by Dico dictionary server.
The examples provided follow the convention used in RFC documents: a text
sent by the server is prefixed with ‘S’, whereas a text sent by the client is
prefixed with ‘C’.

B.1 Initial Reply

When a connection is established, the server sends an initial reply to the
client. This reply has the following format:

220 hostname text <capabilities> msg-id
Its parts and their meaning are described in the following table:

hostname The name of the host. It is determined automatically, unless
set using hostname configuration file statement (see [hostname
directive], page 27).

text Arbitrary text, as set via initial-banner-text configuration
statement (see Section 4.3.9 [General Settings], page 26).

capabilities
A comma-separated list of server capabilities. It is configured
using capability statement (see Section 4.3.10 [Capabilities]
page 28).

)

msg-id A unique identifier similar to the format specified in RFC822,
except that spaces and quoted pairs are not allowed within it.
This identifier will be used by the client when formulating the au-
thentication string used in the AUTH command (see Section B.2.5
[AUTH], page 109).
An example of initial reply follows:
220 Trurl.gnu.org.ua <auth.mime> <520.1212912026@Trurl.gnu.org.ua>

B.2 Standard Commands
The following are standard commands, defined in RFC2229.

B.2.1 The DEFINE Command

The DEFINE command searches for definitions of a word.

DEFINE db word [Command]
Look up the word word in database db. If dbis ‘!’, then all the databases
will be searched until the word is found, and all matches in that database
will be returned. Similarly, if db is ‘*’, then all the databases will be
searched and all matches in all databases will be returned. In these two
cases, the databases are searched in the same order as that returned by
SHOW DB command (see Section B.2.3 [SHOW], page 107).

ftp://ftp.rfc-editor.org/in-notes/rfc822

106 GNU Dico Manual

If the word was not found, response code 552 is returned.

If the word is found, a response code 150 is sent, followed by the number
of definitions found. Then, for each definition a response code 151 is
returned, followed by the textual body of the definition. In a 151 response,
the first three space-delimited parameters give the word looked for, the
name and a short description of the database. The latter two are the
same as shown in the output from SHOW DB command.

The textual body of each definition is terminated with a dot (‘.”) on a
line alone. If any line in the definition begins with a dot, it is duplicated
to avoid confusion with body terminator.

After all of the definitions have been sent, a status code 250 is sent. If
timing is set to ‘true’ in the configuration file, this latter response also
carries timing information. See Section 4.3.14 [Tuning], page 36, for more
information about timing output.

Possible responses from DEFINE command are:

550 Invalid database, use SHOW DB for a list
552 No match

150 n definitions found: list follows

151 word database name

250 ok (optional timing information here)

Example transaction:

: DEFINE eng-swa man

150 1 definitions found: list follows

151 "man" eng-swa "English-Swahili xFried/FreeDict Dictionary"
man <n.>

Q

mwanamume

nNMnnwnwwn nnn

250 Command complete [d/m/c = 1/0/12 0.000r 0.000u 0.000s]

B.2.2 The MATCH Command

The MATCH command searches for word in the database index. The searching
algorithm is determined by strategy. See Section 6.2 [Strategies|, page 74,
for a list of strategies offered by GNU Dico.

MATCH database strategy word [Command]
Match word in database using strategy. As with DEFINE, the database
can be ‘!’ or ‘*’ (See Section B.2.1 [DEFINE], page 105, for a detailed
description of these wildcards).

The strategy is either the name of a strategy to use, or a dot (‘.”), mean-
ing to use default strategy. The default strategy is set using default-
strategy configuration file statement (see Section 4.3.9 [General Set-
tings|, page 26. Its default value is ‘lev’, which means ‘use Levenshtein
algorithm’ (see Section 6.2 [Strategies|, page 74).

Appendix B: Dictionary Server Protocol 107

If no matches are found in any of the searched databases, then response
code 552 will be returned. Otherwise, response code 152 will be returned
followed by a list of matched words, one per line, in the form:

database word

Thus, prepending a ‘DEFINE ’ to each such response, one obtains a valid
DEFINE command.

The textual body of the match list is terminated with a line containing
only a dot character.

Following the list, response code 250 is sent, which includes timing
information, if timing directive is set in the configuration file (see
Section 4.3.14 [Tuning], page 36).

Possible responses:

550 Invalid database, use SHOW DB for a list
551 Invalid strategy, use SHOW STRAT for a list
552 No match

152 n matches found: list follows

250 ok (optional timing information here)

Examples:

: MATCH * . "weather"
1562 12 matches found: list follows
eng-afr "feather"
eng-afr "leather"
eng-afr "weather"
eng-deu "feather"
eng-deu "heather"
eng-deu "leather"
eng-deu "weather"
eng-deu "wether"
eng-deu "wheather"
devils "WEATHER"

Q

[N NeoNoNoNoNoNoNoNeNe NN !

250 Command complete [d/m/c = 0/12/100677 0.489r 0.479u 0.007s]

B.2.3 The SHOW Command

The SHOW command outputs various information about the server and data-
bases.

SHOW DB [Command]|

SHOW DATABASES [Command]|

Display the list of currently accessible databases, one per line, in the form:
database description

The list is terminated with is a dot (‘.”) on a line alone.
Possible responses:

110 n databases present
554 No databases present

108 GNU Dico Manual

SHOW STRAT [Command]
SHOW STRATEGIES [Command]
Display the list of currently supported search strategies, one per line, in
the form:
strategy description

The list is terminated with is a dot (‘.”) on a line alone.
Possible responses:

111 n strategies available
555 No strategies available

SHOW INFO database [Command]
Displays the information about the specified database. The information
is a free-form text and is suitable for display to the user in the same
manner as a definition. The textual body of the response is terminated
with is a dot (*.”) on a line alone.

Possible responses:

550 Invalid database, use SHOW DB for a list
112 database information follows

The textual body is retrieved from the info statement in the configura-
tion file (see Section 4.3.12 [Databases|, page 30), or, if it is not speci-
fied, from the database itself, using dico_db_info callback function (see
[dico_db_info|, page 72). If neither source returns anything, the string ‘No
information available.’ is returned.

SHOW SERVER [Command]
Return a server-specific information.

Response:

114 server information follows
The information follows, terminated with a dot on a line alone.

The textual body returned by the SHOW SERVER command consists of two
parts. It begins with a line containing host name of the server and,
optionally an additional information about the daemon and the system
it runs on. The exact look and amount of information in this line is
controlled by show-sys-info configuration statement (see Section 4.3.6
[Security Settings|, page 23). This line is followed by the text supplied
with server-info configuration statement (see Section 4.3.9 [General
Settings|, page 26).

B.2.4 The OPTION Command

The OPTION command allows to request optional features on the remote
server. Currently the only implemented subcommand is:

OPTION MIME [Command]|
Requests that all text responses be prefaced by a MIME header (RFC2045)
followed by a single blank line.

ftp://ftp.rfc-editor.org/in-notes/rfc2045.txt

Appendix B: Dictionary Server Protocol 109

After this command is issued, the server begins each textual response
with a MIME header. This header consists of ‘Content-type’ and
‘Content-transfer-encoding’ headers, as supplied by the corresponding
configuration file statements for this database (See Section 4.3.12 [Data-
bases], page 30, see Section 4.3.12 [Databases|, page 30). Any or both of
these headers may be missing.

B.2.5 The AUTH Command

The AUTH command allows client to authenticate itself to the server. De-
pending on the server configuration, authenticated users may get access to
more databases (see Section 4.3.12.1 [Database Visibility], page 32) or more
detailed server information (see Section 4.3.6 [Security Settings|, page 23).

AUTH username auth-string [Command]
Authenticate client to the server using a username and password. The
auth-string is computed as in the APOP protocol (RFC1939. Briefly, it
is the MD5 checksum of the concatenation of the msg-id (see Section B.1
[Initial Reply], page 105) and the shared secret that is stored both on the
server and client machines.

See Section 4.3.3 [Authentication|, page 16, for information on how to
configure server for authenticating clients.

This command is supported only if ‘auth’ capability is requested in the
configuration (see Section 4.3.10 [Capabilities|, page 28).

B.2.6 The CLIENT Command

CLIENT info [Command]
Identify client to server. The info argument contains a string identifying
the client program (e.g. its name and version number). This information
can then be used in logging (see Section 4.3.8 [Access Log|, page 24).

B.2.7 The STATUS Command

STATUS [Command]
Display cumulative timing information. This command returns a
‘210’ status code, followed by the timing information as described in
Section 4.3.14 [Tuning], page 36, e.g.

C: STATUS
S: 210 [d/m/c = 28/1045/119856 21.180r 10.360u 1.040s]

B.2.8 The HELP Command

HELP [Command]
The HELP command provides a short summary of commands that are
understood by the server. The response begins with a ‘113’ code, followed
by textual body defined in help-text configuration file statement (see

ftp://ftp.rfc-editor.org/in-notes/rfc1929.txt

110 GNU Dico Manual

Section 4.3.9 [General Settings|, page 26), which is terminated by a dot on
a line by itself. A ‘250’ response code finishes the output. For example:
113 help text follows

DEFINE database word -- look up word in database
MATCH database strategy word -- match word in database
SHOW DB -- list all accessible databases
SHOW DATABASES -- list all accessible databases
SHOW STRAT -- list available matching strategies
SHOW STRATEGIES -- list available matching strategies
SHOW INFO database -- provide database information
SHOW SERVER -- provide site-specific information
CLIENT info -- identify client to server
STATUS -- display timing information
HELP -- display this help information
QUIT -- terminate connection
250 Ok
B.2.9 The QUIT Command
QUIT [Command]

Terminate connection.

This command returns a response code 221, optionally followed by timing
information (see Section 4.3.14 [Tuning], page 36).

B.3 Extended Commands

In addition to the standard commands, the Dico server also offers a set of
experimental or extended commands.

XIDLE [Command]|
This command displays the current inactivity timeout setting (see
[inactivity-timeout|, page 16), and resets idle timer to 0. The timeout
value is printed as the first word after a ‘110’ reply code, e.g.:

C: XIDLE
S: 110 180 second(s)

The value of ‘0’ means there are no timeout.

XVERSION [Command|
This command displays the daemon implementation and version number.
It becomes available only if ‘xversion’ capability was requested in the
configuration file (see Section 4.3.10 [Capabilities|, page 28).

C: XVERSION
S: 110 dicod (dico 2.10)

XLEV param [Command|
If param is the word ‘tell’, displays the current value of Levenshtein
threshold. If param is a positive integer value, sets the Levenshtein
threshold to this value.

Appendix B: Dictionary Server Protocol 111

This command becomes available only if ‘x1ev’ capability was requested
in the configuration file (see Section 4.3.10 [Capabilities], page 28).
C: xlev tell
280 1
xlev 3
250 ok - Levenshtein threshold set to 3
xlev tell
280 3

nanawn

Appendix C: Time and Date Formats 113

Appendix C Time and Date Formats

This appendix documents the time format specifications understood by the
‘%t’ log format specifier (see Section 4.3.8 [Access Log|, page 24). Essentially,
it is a reproduction of the man page for GNU strftime function.

Ordinary characters placed in the format string are reproduced without
conversion. Conversion specifiers are introduced by a ‘%’ character, and are
replaced as follows:

ha The abbreviated weekday name according to the
current locale.

%A The full weekday name according to the current
locale.
b The abbreviated month name according to the cur-

rent locale.

/B The full month name according to the current lo-
cale.
he The preferred date and time representation for the

current locale.

%C The century number (year/100) as a 2-digit integer.

hd The day of the month as a decimal number (range
01 to 31).

%D Equivalent to ‘%m/%d/%y’.

he Like ‘%d’, the day of the month as a decimal num-

ber, but a leading zero is replaced by a space.

HE Modifier: use alternative format, see below (see
[conversion specs], page 115).

hF Equivalent to ‘%4Y-%m-%d’ (the ISO 8601 date for-
mat).
WG The ISO 8601 year with century as a decimal num-

ber. The 4-digit year corresponding to the ISO
week number (see ‘%V’). This has the same format
and value as ‘%y’, except that if the ISO week num-
ber belongs to the previous or next year, that year
is used instead.

114 GNU Dico Manual

he Like ‘%G’, but without century, i.e., with a 2-digit
year (00-99).

%h Equivalent to ‘%b’.

JH The hour as a decimal number using a 24-hour

clock (range 00 to 23).

I The hour as a decimal number using a 12-hour
clock (range 01 to 12).

% The day of the year as a decimal number (range
001 to 366).
hk The hour (24-hour clock) as a decimal number

(range 0 to 23); single digits are preceded by a
blank. (See also ‘%H’.)

YAl The hour (12-hour clock) as a decimal number
(range 1 to 12); single digits are preceded by a
blank. (See also ‘%I’.)

Jim The month as a decimal number (range 01 to 12).
M The minute as a decimal number (range 00 to 59).
Jn A newline character.

%0 Modifier: use alternative format, see below (see

[conversion specs], page 115).

hp Either ‘AM’ or ‘PM’ according to the given time
value, or the corresponding strings for the current
locale. Noon is treated as ‘pm’ and midnight as ‘am’.

WP Like ‘%p’ but in lowercase: ‘am’ or ‘pm’ or a corre-
sponding string for the current locale.

hr The time in ‘a.m.’” or ‘p.m.’ notation. In the
POSIX locale this is equivalent to ‘%I:%M:%S %p’.

%R The time in 24-hour notation (‘%H:%M’). For a ver-
sion including the seconds, see ‘4T’ below.

%s The number of seconds since the Epoch, i.e., since
1970-01-01 00:00:00 UTC.

Appendix C: Time and Date Formats 115

hS The second as a decimal number (range 00 to 61).
ht A tab character.

T The time in 24-hour notation (‘%H:%M:%S’).

hu The day of the week as a decimal, range 1 to 7,

Monday being 1. See also ‘%w’.

yAY) The week number of the current year as a decimal
number, range 00 to 53, starting with the first Sun-
day as the first day of week 01. See also ‘%V’ and
WAL

YAl The ISO 8601:1988 week number of the current
year as a decimal number, range 01 to 53, where
week 1 is the first week that has at least 4 days in
the current year, and with Monday as the first day
of the week. See also ‘%U’ and ‘%W’.

yATS The day of the week as a decimal, range 0 to 6,
Sunday being 0. See also ‘%u’.

YAl The week number of the current year as a deci-
mal number, range 00 to 53, starting with the first
Monday as the first day of week 01.

hx The preferred date representation for the current
locale without the time.

WX The preferred time representation for the current
locale without the date.

hy The year as a decimal number without a century
(range 00 to 99).

hY The year as a decimal number including the cen-
tury.
hz The time-zone as hour offset from GMT. Required

to emit RFC822-conformant dates (using ‘%a, %d
%o %Y SH:M: %S %z’)

YA The time zone or name or abbreviation.
T+ The date and time in date(1) format.

ol A literal ‘)4’ character.

116 GNU Dico Manual

Some conversion specifiers can be modified by preceding them by the
‘E’ or ‘0" modifier to indicate that an alternative format should be used.
If the alternative format or specification does not exist for the current lo-
cale, the behaviour will be as if the unmodified conversion specification were
used. The Single Unix Specification mentions ‘%Ec’, ‘4EC’, ‘%Ex’, ‘hEX’, ‘%iRy’,
“REY’, %0d’, ‘%0e’, ‘%0H’, ‘%0TI°, ‘%0m’, ‘%0M’, ‘%08’, ‘%0u’, ‘%0U’, %0V’ ‘%0w’,
“%0W’, ‘%0y’, where the effect of the ‘0’ modifier is to use alternative nu-
meric symbols (say, roman numerals), and that of the ‘E’ modifier is to use
a locale-dependent alternative representation.

Appendix D: The Libdico Library 117

Appendix D The Libdico Library

D.1 Strategies

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

struct dico_strategy {
char *name;
char *descr;
dico_select_t sel;
void *closure;
int is_default;

};

dico_strategy_t dico_strategy_dup (const [Function]
dico_strategy_t strat)

dico_strategy_t dico_strategy_find (const char [Function]
*name)

int dico_strategy_add (const dico_strategy_t strat) [Function]

dico_iterator_t dico_strategy_iterator (void) [Function]

void dico_strategy_iterate (dico_list_iterator_t itr, [Function]
void *data)

size_t dico_strategy_count (void) [Function]

int dico_set_default_strategy (const char *name) [Function]

const dico_strategy_t [Function]
dico_get_default_strategy (void)

int dico_strategy_is_default_p (dico_strategy_t [Function]
strat)

D.2 argcv

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

118 GNU Dico Manual

dico_argcv_quoting_style [enum]

enum dico_argcv_quoting_style [Variable]
dico_argcv_quoting_style

int dico_argcv_get (const char *command, const char [Function]
*delim, const char *cmnt, int *argc, char ***argv)

int dico_argcv_get_n (const char *command, int len, [Function]
const char *delim, const char *cmnt, int *argc, char ***argv)

int dico_argcv_get_np (const char *command, int len, [Function]

const char *delim, const char *cmnt, int flags, int *argc,
char ***argv, char **endp)

int dico_argcv_string (int argc, const char **argv, [Function]
char **string)

void dico_argcv_free (int argc, char **argv) [Function]

void dico_argv_free (char **argv) [Function]

int dico_argcv_unquote_char (int c) [Function]

int dico_argcv_quote_char (int c) [Function]

size_t dico_argcv_quoted_length (const char *str, [Function]
int *quote)

void dico_argcv_unquote_copy (char *dst, const char [Function]
*src, size_t n)

void dico_argcv_quote_copy (char *dst, const char [Function]
*src)

void dico_argcv_remove (int *argc, char ***argv, int [Function]
(*sel) (const char *, void *), void *data)

D.3 Lists

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

dico_list_t [Type]
dico_iterator_t [Type]
dico_list_iterator_t [Function Type]

typedef int (*dico_list_iterator_t)(void *item, void *data);

dico_list_comp_t [Function Type]

typedef int (*dico_list_comp_t) (const void *, const void *);

Appendix D: The Libdico Library

dico_list_t dico_list_create (void)

void dico_list_destroy (dico_list_t *1ist,
dico_list_iterator_t free, void *data)

void dico_list_iterate (dico-list_-t 1ist,
dico_list_iterator_t itr, void *data)

void * dico_list_item (dico_list_t 1ist, size_t n)
size_t dico_list_count (dico_list_t 1ist)
int dico_list_append (dico_list_t 1ist, void *data)

int dico_list_prepend (dico_list-t 1ist, void *data)
int dico_list_push (dico-list_t 1ist, void *data)

int dico_list_insert_sorted (dico_list_t 1ist, void
*data, dico_list_.comp_t cmp)

dico_list_t dico_list_intersect (dico_list_t a,
dico_list_t b, dico_list_comp_t cmp)

int dico_list_intersect_p (dico_list_t a, dico_list_t b,
dico_list_comp_t cmp)

void * dico_list_pop (dico_list_t 1ist)

void * dico_list_locate (dico_list_t 1ist, void *data,

dico_list_comp_t cmp

)
void * dico_list_remove (dico_list-t 1ist, void *data,
)

dico_list_comp_t cmp
void * dico_iterator_current (dico-iterator_t itr)

dico_iterator_t dico_iterator_create (dico_list_t
list)

void dico_iterator_destroy (dico_iterator_t *pitr)
void * dico_iterator_first (dico-iterator_t itr)
void * dico_iterator_next (dico_iterator_t itr)

void * dico_iterator_remove_current
(dico_iterator_t itr)

void dico_iterator_set_data (dico-iterator_t itr,
void *data)

119

[Function]

[Function]
[Function]

Function

Function
Function

[]
[]
[Function]
[]
[]
[Function]
[Function]

[Function]

[Function]

[Function]
[Function]

[Function]

[Function]

[Function]
[Function]
[Function]

[Function]

[Function]

120 GNU Dico Manual

D.4 Associative lists

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

struct dico_assoc {
char x*key;
char *value;

};

dico_assoc_list_t [Type]

dico_assoc_list_t dico_assoc_create (void) [Function]

dico_assoc_list_t [Function]
dico_assoc_dup(dico_assoc_list_t src)

void dico_assoc_destroy (dico-assoc_list_t *passoc) [Function]

dico_assoc_clear(dico_assoc_list_t assoc) [int]

int dico_assoc_add (dico_assoc_list_t assoc, const char [Function]
*key, const char *value)

int dico_assoc_append(dico_assoc_list_t assoc, [Function]
const char *key, const char *value)

const char *dico_assoc_find_n([Function]
dico_assoc_list_t assoc, const char *key, size_t n)

const char * dico_assoc_find (dico_assoc_list_t [Function]
assoc, const char *key)

void dico_assoc_remove_n(dico_assoc_list_t assoc, [Function]
const char *key, size_t n)

void dico_assoc_remove (dico_assoc_list_t assoc, [Function]
const char *key)

size_t dico_assoc_count(dico_assoc_list_t [Function]
assoc)

dico_iterator_t dico_assoc_iterator([Function]

dico_assoc_list_t assoc)

D.5 Diagnostics Functions

Editor’s note:

Appendix D: The Libdico Library 121

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

L_DEBUG

L_INFO

L_NOTICE

L_WARN

L_ERR

L_CRIT

L_ALERT

L_EMERG

const char * dico_program_name [Variable]

const char * dico_invocation_name [Variable]

void dico_set_program_name (char *name) [Function]

void dico_log_printer_t (int 1v1, int [Function Type]
exitcode, int errcode, const char *fmt, va_list ap)

void dico_set_log_printer (dico-log-printer_-t prt) [Function]

void dico_vlog (int 1v1, int errcode, const char *fmt, [Function]
va_list ap)

void dico_log (int 1vl, int errcode, const char *fmt, [Function]

void dico_die (int exitcode, int 1v1, int errcode, char [Function]

*fmt, ...)
int dico_str_to_diag_level (const char *str) [Function]
dico_stream_t dico_log_stream_create (int level) [Function]
D.6 Filter
FILTER_ENCODE [Define]
FILTER_DECODE [Define]
filter_xcode_t [Function Type]

typedef int (*#filter_xcode_t) (const char *, size_t,
char *, size_t, size_t *, size_t, size_t *);l

122 GNU Dico Manual

dico_stream_t filter_stream_create (dico_stream_t [Function]
str, size_.t min_level, size_.t max_line_length,
filter_xcode_t xcode, int mode)

dico_stream_t dico_codec_stream_create (const [Function]
char *encoding, int mode, dico_stream_t transport)

dico_stream_t dico_base64_stream_create ([Function]
dico_stream_t str, int mode)

dico_stream_t dico_gp_stream_create ([Function]
dico_stream_t str, int mode)

int dico_base64_input (char c) [Function]

int dico_base64_decode (const char *iptr, size_t [Function]
isize, char *optr, size_t osize, size_t *pnbytes, size_t
line_max, size_t *pline_len)

int dico_base64_encode (const char *iptr, size_t [Function]
isize, char *optr, size_t osize, size_t *pnbytes, size_t
line_max, size_t *pline_len)

int dico_qgp_decode (const char *iptr, size_t isize, [Function]
char *optr, size_t osize, size_t *pnbytes, size_t 1ine_max,
size_t *pline_len)

int dico_qp_encode (const char *iptr, size_t isize, [Function]
char *optr, size_t osize, size_t *pnbytes, size_t line_max,
size_t *pline_len)

D.7 parseopt

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

DICO_PARSEQOPT_PARSE_ARGVO
DICO_PARSEOPT_PERMUTE

dico_opt_type [Enumeration]

Appendix D: The Libdico Library 123

dico_opt_null
dico_opt_bool
dico_opt_bitmask
dico_opt_bitmask_rev
dico_opt_long
dico_opt_string
dico_opt_enum
dico_opt_const
dico_opt_const_string

dico_option [struct]
struct dico_option {
const char *name;
size_t len;
enum dico_opt_type type;
void *data;
union {
long value;
const char **enumstr;
} vy

int (*func) (struct dico_option *, const char *);

};
DICO_OPTSTR name [Macro]
int dico_parseopt (struct dico_option *opt, int argc, [Function]

char **argv, int flags, int *index)

D.8 stream

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

int dico_stream_create (dico_stream_t *pstream, int [Function]
flags, void *data)

DICO_STREAM_READ
DICO_STREAM_WRITE
DICO_STREAM_SEEK

int dico_stream_open (dico_stream_t stream) [Function]

void dico_stream_set_open (dico_stream_t stream, [Function]
int (*openfn) (void *, int))

void dico_stream_set_seek (dico_stream_t stream, [Function]
int (*fun_seek) (void *, off_t, int, ofl_t *))

124 GNU Dico Manual

void dico_stream_set_size (dico_stream_t stream, [Function]
int (*sizefn) (void *, off_t *))

void dico_stream_set_read (dico_stream_t stream, [Function]
int (*readfn) (void *, char *, size_t, size_t *))

void dico_stream_set_write (dico_stream_t stream, [Function]
int (*writefn) (void *, const char *, size_t, size_t *))

void dico_stream_set_flush (dico_stream_t stream, [Function]
int (*f1ushfn) (void *))

void dico_stream_set_close (dico_stream_t stream, [Function]
int (*closefn) (void *))

void dico_stream_set_destroy (dico_stream_t [Function]
stream, int (*destroyfn) (void *))

void dico_stream_set_ioctl (dico_stream_t stream, [Function]
int (*ctl) (void *, int, void *))

void dico_stream_set_error_string (dico_stream_t [Function]

stream, const char *(*error_string) (void *, int))

int dico_stream_set_buffer (dico_stream_t stream, [Function]
enum dico_buffer_type type, size_t size)

dico_buffer_type [Enumeration]

dico_buffer_none
dico_buffer_line
dico_buffer_full

off_t dico_stream_seek (dico_stream_t stream, off_t [Function]
offset, int whence)

DICO_SEEK_SET
DICO_SEEK_CUR
DICO_SEEK_END

int dico_stream_size (dico_stream_t stream, off_t [Function]
*psize)
int dico_stream_read_unbuffered (dico_stream_t [Function]

stream, void *buf, size_t size, size_t *pread)

int dico_stream_write_unbuffered (dico_stream-_t [Function]
stream, const void *buf, size_t size, size_t *pwrite)

int dico_stream_read (dico_stream_t stream, void [Function]
*buf, size_t size, size_t *pread)

int dico_stream_readln (dico_stream_t stream, char [Function]
*buf, size_t size, size_t *pread)

int dico_stream_getdelim (dico_stream_t stream, [Function]
char **pbuf, size_t *psize, int delim, size_t *pread)

Appendix D: The Libdico Library 125

int dico_stream_getline (dico_stream_t stream, char [Function]
**pbuf, size_t *psize, size_t *pread)

int dico_stream_write (dico_stream_t stream, const [Function]
void *buf, size_t size)

int dico_stream_writeln (dico_stream_t stream, [Function]
const char *buf, size_t size)

int dico_stream_ioctl (dico_stream_t stream, int [Function]
code, void *ptr)

const char * dico_stream_strerror (dico_stream_t [Function]
stream, int rc)

int dico_stream_last_error (dico_stream_t stream) [Function]

void dico_stream_clearerr (dico_stream_t stream) [Function]

int dico_stream_eof (dico_stream_t stream) [Function]

int dico_stream_flush (dico_stream_t stream) [Function]

int dico_stream_close (dico_stream_t stream) [Function]

void dico_stream_destroy (dico_stream_t *stream) [Function]

off_t dico_stream_bytes_in (dico_stream_t stream) [Function]

off_t dico_stream_bytes_out (dico_stream_t stream) [Function]

D.9 url

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

dico_url [struct]
#define DICO_REQUEST_DEFINE O
#define DICO_REQUEST_MATCH 1

struct dico_request {
int type;
char *word;
char *database;
char *strategy;
unsigned long n;

};

struct dico_url {

126 GNU Dico Manual

char *string;

char *proto;

char *host;

int port;

char *path;

char *user;

char *passwd;
dico_assoc_list_t args;
struct dico_request req;

};
dico_url_t [Pointer]
int dico_url_parse (dico-url-t *purl, const char *str) [Function]
void dico_url_destroy (dico_url_t *purl) [Function]
const char * dico_url_get_arg (dico_url_t url, [Function]
const char *argname)
char * dico_url_full_path (dico_url_t url) [Function]
D.10 UTF-8

This section describes functions for handling UTF-8 strings. A UTF-8 char-
acter can be represented either as a multi-byte character or a wide character.

Multibyte character is a char * pointing to one or more bytes represent-
ing the UTF-8 character.

Wide character is an unsigned value identifying the character.

In the discussion below, a sequence of one or more multi-byte characters
is called a multi-byte string. Multibyte strings terminate with a single ‘nul’
(0) character.

A sequence of one or more wide characters is called a wide character
string. Such strings terminate with a single 0 value.

D.10.1 Character sizes

size_t utf8_char_width (const unsigned char *cp) [Function]
Returns length in bytes of the UTF-8 character representation pointed to

by cp.

size_t utf8_strlen (const char *str) [Function]
Returns number of UTF-8 characters (not bytes) in str.

size_t utf8_wc_strlen (const unsigned *s) [Function]
Returns number of wide characters in the wide character string s.

D.10.2 Iterating over UTF-8 strings

utf8_iterator [struct]
A data type for iterating over a string of UTF-8 characters. Defined as:

Appendix D: The Libdico Library 127

struct utf8_iterator {
char *string;
char *curptr;
unsigned curwidth;
};
When iterating over characters in string, curptr points to the current
character, and curwidth holds its length in bytes.

int utf8_iter_isascii (struct utf8_iterator itr) [Function]
Returns ‘true’ if itr points to a ASCII character.

int utf8_iter_end_p (struct utf8_iterator *itr) [Function]
Returns ‘true’ if itr reached end of the input string.

int utf8_iter_first (struct utf8_iterator *itr, [Function]
unsigned char *str)
Initializes itr for iterating over the string str. On success, positions
itr.curptr to the next character from the input string, sets
itr.curwidth to the length of that character in bytes, and returns ‘0’.
If str is an empty string, returns ‘1’.

int utf8_iter_next (struct utf8_iterator *itr) [Function]
Positions itr.curptr to the next character from the input string. Sets
itr.curwidth to the length of that character in bytes.

D.10.3 Conversions

The following functions convert between the two string representations.

int utf8_mbtowc_internal (void *data, int (*read) [Function]
(void*), unsigned int *pwc)
Internal function for converting a single UTF-8 character to a correspond-
ing wide character representation. The character to convert is obtained
by calling the function pointed to by read with data as its only argu-
ment. If that call returns a non-positive value, the function sets errno
to ‘ENODATA’ and returns -1.

int utf8_mbtowc (unsigned int *pwc, const char *r, size_.t [Function]
len)
Converts first Ien characters from the multi-byte string r to wide character
representation. On success, returns 0 and stores the result in pwe. The
result pointer is allocated using malloc(3).

On error (invalid multi-byte sequence encountered), returns -1 and sets
errno to ‘EILSEQ’.

int utf8_wctomb (unsigned char *r, unsigned int wc) [Function]
Stores the UTF-8 representation of the Unicode character wc in r[0. .5].
Returns the number of bytes stored. If wc is out of range, return -1 and
sets errno to ‘EILSEQR’.

128 GNU Dico Manual

int utf8_wc_to_mbstr (const unsigned *word, size_t [Function]
wordlen, char **retptr)
Converts first wordlen characters of the wide character string word to
multi-byte representation. The result is returned in retptr. It is allocated
using malloc(3).
Returns 0 on success. On error, returns -1 and sets errno to one of the
following values:

ENOMEM
Not enough memory to allocate the return buffer.

EILSEQ An invalid wide character is encountered.

int utf8_mbstr_to_wc (const char *str, unsigned [Function]
**wptr, size_t *plen)
Converts a multi-byte string from str to its wide character representation.
The result is returned in retptr. It is allocated using malloc(3).

Returns 0 on success. On error, returns -1 and sets errno to one of the
following values:

ENOMEM
Not enough memory to allocate the return buffer.

EILSEQ An invalid wide character is encountered.

int utf8_mbstr_to_norm_wc (const char *str, unsigned [Function]
**wptr, size_t *plen)
Converts a multi-byte string from str to its wide character representation,
replacing each run of one or more whitespace characters with a single
space character (ASCII 32).

The result is returned in retptr. It is allocated using malloc(3).

Returns 0 on success. On error, returns -1 and sets errno to one of the
following values:

ENOMEM
Not enough memory to allocate the return buffer.

EILSEQ An invalid wide character is encountered.

D.10.4 Comparing UTF-8 strings

int utf8_symcmp (unsigned char *a, unsigned char *b) [Function]
Compares first UTF-8 characters from a and b.

int utf8_symcasecmp (unsigned char *a, unsigned char [Function]
*b)
Compares first UTF-8 characters from a and b, ignoring the case.

Appendix D: The Libdico Library 129

int utf8_strcasecmp (unsigned char *a, unsigned char [Function]
*b)
Compares the two UTF-8 strings a and b, ignoring the case of the char-
acters.

int utf8_strncasecmp (unsigned char *a, unsigned char [Function]
*b, size_t maxlen)
Compares at most maxlen first characters from the two UTF-8 strings a
and b, ignoring the case of the characters.

int utf8_wc_strcmp (const unsigned *a, const unsigned [Function]
*b)
Compare the two wide character strings a and b.

int utf8_wc_strncmp (const unsigned *a, const unsigned [Function]
*b, size_t n)
Compares at most n first characters from the wide character strings a
and b.

int utf8_wc_strcasecmp (const unsigned *a, const [Function]
unsigned *b)
Compares the two wide character strings a and b, ignoring the case of
the characters.

int utf8_wc_strncasecmp (const unsigned *a, const [Function]
unsigned *b, size_t n)
Compares at most first n characters of the two wide character strings a
and b, ignoring the case.

D.10.5 Character lookups

unsigned * utf8_wc_strchr (const unsigned *str, [Function]
unsigned chr)
Returns a pointer to the first occurrence of wide character chr in string
str, or ‘NULL’, if no such character is encountered.

unsigned * utf8_wc_strchr_ci (const unsigned *str, [Function]
unsigned chr)
Returns a pointer to the first occurrence of wide character chr (case-
insensitive) in string str, or ‘NULL’, if no such character is encountered.

const unsigned * utf8_wc_strstr (const unsigned [Function]
*vartext, const unsigned *pattern)
Finds the first occurrence of pattern in text. Returns a pointer to the
beginning of pattern in text. Returns NULL if no occurrence was found.

130 GNU Dico Manual

D.10.6 Functions for converting UTF-8 characters

unsigned utf8_wc_toupper (unsigned wc) [Function]
Converts wide character wc to upper case, if possible. Returns we, if it
cannot be converted.

int utf8_toupper (char *s, size_t len) [Function]
Converts first len bytes of the UTF-8 string s to upper case, if possible.

unsigned utf8_wc_tolower (unsigned wc) [Function]
Converts wide character wc to lower case, if possible. Returns we, if it
cannot be converted.

int utf8_tolower (char *s, size_t len) [Function]
Converts first len bytes of the UTF-8 string s to lower case, if possible.

void utf8_wc_strupper (unsigned *str) [Function]
Converts each character from the wide character string str to uppercase,
if applicable.

void utf8_wc_strlower (unsigned *str) [Function]
Converts each character from the wide character string str to lowercase,
if applicable.

D.10.7 Additional functions

unsigned * utf8_wc_strdup (const unsigned *s) [Function]
Returns a pointer to a new wide character string which is a duplicate of
the string s. Memory for the new string is obtained with malloc(3), and
can be freed with free(3).

unsigned * utf8_wc_quote (const unsigned *s) [Function]
Quotes occurrences of backslash and double-quote in s by prefixing each
of them with a backslash. The return value is allocated using malloc(3).

int utf8_quote (const char *str, char **sptr) [Function]
Quotes occurrences of backslash and double-quote in s by prefixing each
of them with a backslash. On success stores the result (allocated with
malloc(3)) in sptr, and returns 0. On error, returns -1 and sets errno to
the one of the following:

ENOMEM
Not enough memory to allocate the return buffer.

EILSEQ An invalid wide character is encountered.

size_t utf8_wc_hash_string (const unsigned *ws, [Function]
size_t n)
Compute a hash code of ws for a symbol table of n buckets.

Appendix D: The Libdico Library 131

int dico_levenshtein_distance (const char *a, const [Function]
char *b, int flags)
Computes Levenshtein distance between UTF-8 strings a and b. The
flags argument is a bitwise or of one or more flags:

0 Default - compute Levenstein distance, treating both argu-
ments literally.

DICO_LEV_NORM
Treat runs of one or more whitespace characters as a single
space character (ASCII 32).

DICO_LEV_DAMERAU
Compute Damerau-Levenshtein distance. This distance takes
into account transpositions.

int dico_soundex (const char *word, char [Function]
code[DICO_SOUNDEX_SIZE])
Computes the Soundex code for the given word. The code is stored in
code. Returns 0 on success, -1 if word is not a valid UTF-8 string.

DICO_SOUNDEX_SIZE [Define]
This macro definition expands to the size of Soundex code buffer, in-
cluding the terminal zero.

Note that this function silently ignores all characters, except Latin letters.

D.11 util

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

char * dico_full_file_name (const char *dir, const [Function]
char *file)

size_t dico_trim_nl (char *buf) [Function]

size_t dico_trim_ws (char *buf) [Function]

D.12 xlat

Editor’s note:

The information in this node may be obsolete or otherwise
inaccurate. This message will disappear, once this node revised.

132 GNU Dico Manual

xlat_tab [struct]
struct xlat_tab {
char *string;

int num;
3
int xlat_string (struct xlat_tab *tab, const char [Function]
*string, size_t len, int flags, int *result)
int xlat_c_string (struct xlat_tab *tab, const char [Function]

*string, int flags, int *result);
XLAT_ICASE

Appendix E: GNU Free Documentation License 133

Appendix E GNU Free Documentation
License

Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Founda-
tion, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or

http://fsf.org/

134

GNU Dico Manual

to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTpX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix E: GNU Free Documentation License 135

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

136

GNU Dico Manual

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

Appendix E: GNU Free Documentation License 137

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not

138

GNU Dico Manual

add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

Appendix E: GNU Free Documentation License 139

10.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new

140

11.

GNU Dico Manual

versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix E: GNU Free Documentation License 141

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the “with. .. Texts.” line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Concept Index

Concept Index

This is a general index of all issues discussed in this manual.

#

#includel 11
#include_once............... 11
#line......... oo oo 11
%
% formats. ... 25
—-load-dir.........cceuuiinnnn 29, 39, 79
--with-1ibWN, configure option..... 47
--with-wordnet, configure option.
.................................. 48
--without-guile, configuration option
................................... 8
--without-preprocessor,
configuration option............. 7
--without-python, configuration
option..........l 8
-E, introduced....................... 10
e T 29, 39, 79
dico......ooiiiiiiiii i 91
.dico_history........................ 86
.dicologin........ooiiiiiiiiiiiiia, 92
/etc/ld.so.conf 30
__init__ on DictionaryClass........ 60
access control lists..................... 21
access log.......... il 24
access-log-filecouuunn. 25
access-log-format................... 25
acl . 21

143
alias ..o 37
all ... 22
all, a strategy 104
A11OW. ot e 21
Ambrose Bierce 43
ANON=GTOUP -« e e e vveeeeeeeeeeeeannnnn.. 21
Apache i 24
article........... 3
ASSOC) 120
authenticated.................. 22
authentication..................... 16, 92
authentication database............... 17
authentication database configuration
.................................. 18
authentication database definition..... 18
authentication database URL.......... 17
authentication database, text.......... 18
authentication resource................ 17
AUTH . ..o e 109
autologin i 87
autologin feature................... ... 92
autologin file.......................... 92
B
block statement 13
boolean value, 12
C
call_data of struct dico_key........ 75
capability................... ... 28
CLIENT. ..ot 109
close. ..o 85
close on DictionaryClass............ 60
close-db ..ot 53
closure of struct dico_strategy..... 74
command. ...ttt 29
command line options................. 39
Comments in a configuration file 10
comments, pragmatic.................. 10

compare_count on DictionaryClass... 61
config, --config option, introduced.. 10
config, --config option, summary ... 40
config-help, —--config-help option,
introduced............... 10

144

config-help, —--config-help option,

100000 00 F2Y 40
configuration file............. 10
configuration file statements........... 11
connection-acl.............. ..ot 23
credentialso il 92
current_markup.............. ... 62
D
daemon operation mode 9
database................. 3, 30, 33, 45, 85
database description................. ... 3
database handler, defined 28
database layer.............. 5
database module, defined.............. 28
database name............... 3
database visibility............. 32
database, authentication 17
database, virtual 33
databases, defining 30
AbAir ..o 44, 45
debug......................L 50
debug, ——debug option, summary 41
Default preprocessor 7
default searches.................... ... 35
default strategy 4
default, autologin keyword.......... 93
default-strategy 28
DEFAULT_DICT_SERVER.................. 7
DEFAULT_PREPROCESSOR................. 7
define, --define option, summary ... 41
define-word..................... 54
define_word on DictionaryClass..... 60
DEFINE..... ...ttt 105
AenY .. 22
deny-allcoiiiiiiiiiiiinnn. 35
deny-length-eq....................... 35
deny-length-ge....................... 35
deny-length-gt....................... 35
deny-length-le....................... 35
deny-length-1t....................... 35
deny-length-ne....................... 35
deny-wordl 35
desCr......oiiiiiiii 53
descr of DicoStrategy................ 62
descr of struct dico_strategy....... 74
descr on DictionaryClass............ 60
description..................iiall 31
description, database................... 3
Devil’s Dictionary.................. ... 43
devils.outcovviiniiiinn... 43

GNU Dico Manual

Dicooverviewccoiiiiiiin.. 5
dico, a programoo.. 81
dico-key->word....................... 55
dico-key? ...l 55
dico-make-key........................ 55
dico-register-strat................. 56
dico-strat-default?................. 55
dico-strat-description............. 55
dico-strat-name 55
dico-strat-select?.................. 55
dico-strat-selector?................ 55
dico_argcv_free.................... 118
dico_argecv_get 118
dico_argcv_get n................... 118
dico_argcv_get_np.................. 118
dico_argcv_quote_char 118
dico_argcv_quote_copy 118
dico_argcv_quoted_length.......... 118
dico_argcv_quoting_style.......... 118
dico_argcv_remove.................. 118
dico_argcv_string.................. 118
dico_argcv_unquote_char........... 118
dico_argcv_unquote_copy........... 118
dico_argv_free 118
dico_assoc_add 120
dico_assoc_append(dico_assoc_list_t
................................. 120
dico_assoc_count(dico_assoc_list_t
................................. 120
dico_assoc_create.................. 120
dico_assoc_destroy................. 120
dico_assoc_dup(dico_assoc_list_t
................................. 120
dico_assoc_find.................... 120
dico_assoc_iterator(............... 120
dico_assoc_list_t.................. 120
dico_assoc_remove.................. 120
dico_assoc_remove_n(............... 120
dico_base64_decode................. 122
dico_base64_encode................. 122
dico_base64_input.................. 122
dico_base64_stream_create......... 122
dico_buffer_type................... 124
dico_capabilities................... 71
dico_cloSe ... 72
dico_codec_stream_create.......... 122
dico_compare_count.................. 73
dico_database_module, a structure..... 71
dico_db_descr...............iiin... 73
dico_db_info.............. 72
dico_define.............. ..., 73

Concept Index

dico_free_db......................... 72
dico_free_result.................... 73
dico_full_file name................ 131
dico_get_default_strategy......... 117
dico_dnit L. 71
dico_init_db......................... 72
dico_invocation_name............... 121
dico_iterator_create............... 119
dico_iterator_current 119
dico_iterator_destroy 119
dico_iterator_first................ 119
dico_iterator_next................. 119
dico_iterator_remove_current 119
dico_iterator_set_data............ 119
dico_iterator_t 118
dico key ...t 75
dico_key_deinit 75
dico_key_init............. ...l 75
dico_key_match....................... 76
dico_key_t.....ooiiiiiiiiiiii 75
dico_levenshtein_distance......... 131
dico_list_append................... 119
dico_list_comp_t................... 118
dico_list_count 119
dico_list_create................... 119
dico_list_destroy.................. 119
dico_list_insert_sorted........... 119
dico_list_intersect................ 119
dico_list_intersect_p............. 119
dico_list_ditem..................... 119
dico_list_iterate.................. 119
dico_list_iterator_t............... 118
dico_list_locate................... 119
dico_list_pop...................on 119
dico_list_prepend.................. 119
dico_list_push..................... 119
dico_list_remove................... 119
dico_list_t............ ... 118
dico_10g v vvviii e 121
dico_log_printer_t................. 121
dico_log_stream_create............ 121
dico_match.............. ... 73
dico_open................oiiia 72
dico_opt_type................ 122
dico_option.............ooiiiiiiil 123
dico_output_result 73,77
dico_parseopt....................... 123
dico_program_name.................. 121
dico_gp_decode 122
dico_gp_encode 122
dico_qgp_stream_create 122
dico_result_count 73

145
dico_result_headers................. 74
dico_run_test............... 74
dico_select_t.............iiinn... 74
dico_set_default_strategy......... 117
dico_set_log_printer............... 121
dico_set_program_name 121
dico_soundexX...........oiuiirininnn. 131
dico_str_to_diag level............ 121
dico_strategy_add.................. 117
dico_strategy_count................ 117
dico_strategy_dup.................. 117
dico_strategy_find................. 117
dico_strategy_is_default_p........ 117
dico_strategy_iterate............. 117
dico_strategy_iterator............ 117
dico_stream_bytes_in............... 125
dico_stream_bytes_out 125
dico_stream_clearerr............... 125
dico_stream_close.................. 125
dico_stream_create................. 123
dico_stream_destroy................ 125
dico_stream_eof 125
dico_stream_flush.................. 125
dico_stream_getdelim............... 124
dico_stream_getline................ 125
dico_stream_ioctl.................. 125
dico_stream_last_error............ 125
dico_stream_open................... 123
dico_stream_read................... 124
dico_stream_read_unbuffered 124
dico_stream_readln................. 124
dico_stream_seek................... 124
dico_stream_set_buffer............ 124
dico_stream_set_close............. 124
dico_stream_set_destroy........... 124
dico_stream_set_error_string..... 124
dico_stream_set_flush............. 124
dico_stream_set_ioctl............. 124
dico_stream_set_open............... 123
dico_stream_set_read............... 124
dico_stream_set_seek............... 123
dico_stream_set_size............... 124
dico_stream_set_write............. 124
dico_stream_size................... 124
dico_stream_strerror............... 125
dico_stream_write.............. 78, 125
dico_stream_write_unbuffered..... 124
dico_stream_writeln............ 78, 125
dico_trim_nl........................ 131
dico_trim_ws...............oiiiu. 131
dico_url 125

dico_url_destroy................... 126

146

dico_url_full _path................. 126
dico_url_get_arg................... 126
dico_url parse 126
dico_url_t....... ..o, 126
dico_version...............ciiiinin.. 71
dico_vlog.............iiiiil 121
DICO_CAPA_DEFAULT 71
DICO_EXPORTcovviiiiinninnn.n. 71
DICO_MODULE_VERSION................. 71
DICO_OPTSTR......ccvviiiiiinn 123
DICO_SELECT_BEGIN 75, 76
DICO_SELECT_BEGIN, Python.......... 61
DICO_SELECT_END.................. 75, 76
DICO_SELECT_END, Python............ 61
DICO_SELECT_RUN.................. 76, 77
DICO_SELECT_RUN, Python............ 61
DICO_SOUNDEX_SIZE.................. 131
dicod, description...................... 9
dicod, operation modes 9
dicod.conf 10
dict server, default 7
DICT protocol ...t 5
dictorg database declaration........... 45
dictorg database format 5
dictorg handler definition.............. 44
dictorg initialization options........... 44
dictorg module............ 44
disable-mechanism................... 21
distance............. oot 85
distance, Levenshtein................. 103
dlev, a strategy 103
Double Metaphone.................... 67

E

enable-mechanism.................... 21
€SCAPE SEQUENCE . . o v vvoee e e eaeeeenn 12
exact, a strategy 103

F

filter_stream_create............... 122
filter_xcode_t 121
FILTER_DECODE....................... 121
FILTER_ENCODE....................... 121
first, a strategy ..., 104
flags of struct dico_key............. 75
foreground, --foreground option,
introduced................. 9
foreground, --foreground option,
SUMIMALY « v vve et eeeee e e eeennnn. 40
free_result on DictionaryClass..... 61

GNU Dico Manual

geide. 5
geide module. ... ool 45
gelder. ..o 99
GCIDE ... 99
GNU Collaborative International
Dictionary of English....... 5, 45, 99
BLOUD « o evveeeeeeeeeieeee e 14, 22
GrOUP-—TESOUTCEe. .. \\vveinnrnnnennnnns 18
gsasl. ... 20
Guile ... 50
Guile APL........... i 52
guilemodule........... 50
Guile strategy and key functions....... 55
guile, configuration..................... 8

H

handler........... i, 30
has_selector of DicoStrategy........ 62
headword o L 3
help ..o 89
help, --help option, summary........ 40
help-text ...t 27
HELPo e 109
here-document 12
history........ooooiiiiiii i 86
host, autologin keyword............. 94
hostname 27

I

ident-keyfile........................ 16
ident-timeout................. 16
identity-check....................... 16
idxdir..... ...l 46
inactivity-timeout.................. 16
include-dir, --include-dir option,
SUMMALY « v v v vveeeeeeeeeeennnnnnn. 41
index-cache-size.................... 46
index-program........................ 46
inetd operation mode................... 9
inetd, --inetd option, introduced..... 9
inetd, --inetd option, summary 39
inetd.confl 9
info... ...l 31, 54, 86
info on DictionaryClass............. 60
information, database 3
init file........o i 91

init-args..............iiiiia 50, 51

Concept Index

init-fun............ 50, 51, 52
injt-script........... ... o 50, 51, 52
init-script=name.................... 60
initial-banner-text................. 26
initialization file....................... 91
invocationooiiiiiiia.. 39
is_default of struct dico_strategy
.................................. 75

L

lang ..o 54
lang on DictionaryClass............. 60
last, a strategy.............., 104
Lawrence Philips...................... 67
1d . 86
LD_LIBRARY PATH..................... 30
Idap module 68
lev, a strategyoooii 103
Levenshtein distance 103
HbWN ..o 47
libwordnet i 47
lint, --lint option, introduced 10
lint, --lint option, summary........ 39
List. .o 13
listen.........oooiiiiiiiiiiiiiiL 14
loadpath............................. 29
load-dir, --load-dir option, summary
.................................. 40
load-module....................oo.L. 29
load-module, shortcut form............ 29
load-path ...l 50
load-path=path....................... 60
log-facility................ooiuiet. 24
log-print-severity.................. 24
1og—tag. ..o vi e 24
LOG_FACILITYot 8
logging requests....................... 24
logging, configuration 24
login, autologin keyword............ 93
Is oo 86
LTDL_LIBRARY PATH................... 30

M

machine, autologin keyword 93
match-wordcooviiiiiinnannn.. 54

147
match_word on DictionaryClass...... 61
MATCH.. ...t 106
max-children......................... 16
mechanisms, autologin keyword...... 93
merge-defs.................. 49
metaphone2..............., 67
mime-headers......................... 31
MOdE ..o ottt 14
module load path 29
module-load-path.................... 30
Modules ... 43
multi-line comments................ ... 10
N
NAME . ..ottt ettt 30
name of DicoStrategy................. 62
name of struct dico_strategy........ 74
name, database 3
ndlev, a strategy 104
nlev, a strategy 103
no-preprocessor, ——NO-preprocessor
option, introduced 10
Nno-preprocessor, ——NO-preprocessor
option, summary 41
no-transcript, —-no-transcript option,
5100000 00T 41
noauth, autologin keyword........... 93
nodebug......................LL 50
nosasl, autologin keyword........... 93
noshow-dictorg-entries............. 45
NOSOTE ..t 45
notrim-ws ...l 45
nprefix module................ 67
nprefix, a strategy 103
(@)
1) 0153 & H 84
open on DictionaryClass............. 60
open—db....... ... 53
operation modes of dicod 9
option, authentication................. 17
OPTIONMIMEooiois. 108
options......... ..ol 17
options, dicod.......... ...t 39
outline dictionary 43
outlinemode................ 43
outline module........................ 43
outputl 55, 77
output on DictionaryClass........... 61

PAGET ..o vttt 87
PAGER...... ... i 87
pammodule L 68
PAM. .. 68
password, autologin keyword 93
password-resource................... 17
Patrick J. Cassidy...................... 5
pcremodule oL 68
pcre, a strategy ... 104
Perl-compatible regular expressions.... 68
Pidfile.t 15
POS 49
PP-setup ...l 37
pragmatic comments 10
prefix 89
prefix, a strategy............ 103
prepend-load-path 29, 30
PIePIOCESSOT ..o v vt tee e e 37
preprocessor, —-preprocessor option,
SUMIMALY « v vve e eeeeee e e 41
preprocessor, default 7
promptl 89
protocol layer 5
Pythonl 59
python module................ 59
python, configuration................... 8
Q
quiet. ... 87
QUIb. 89
QUIT. .. e 110
quoted string..............oooiiii.. 12

re, a strategyl 104
realm................. il 21
realm, autologin keyword............ 93
regexp, a strategy................. ... 104
regexp, Perl-compatible 68
register_markup 62
register_strat....................... 61
resource, authentication............... 17
restart procedure....................... 9
restarting dicod................., 9
result-count.............. 55

result_count on DictionaryClass.... 61
result_headers on DictionaryClass

GNU Dico Manual

REC 2229 5

root-class=name 60

runtest, --runtest option, summary
.................................. 39

sasl ..o 20
sasl, autologin keyword............. 93
SASL . 20
Scheme 50
Scheme strategy and key functions 55
sel of struct dico_strategy......... 74
seleCt......ooviiiiiiiii i 76
select on DicoStrategy.............. 62
server-info........... 27
Service....... ..l 21
service, autologin keyword.......... 93
show-dictorg-entries................ 44
show-sys-info........................ 23
SHOW DATABASES, 107
SHOWDBcoiii i 107
SHOW INFO......covniii i 108
SHOW SERVERot 108
SHOW STRAT . ..o ee i 108
SHOW STRATEGIES..................... 108
shutdown-timeout 16
SIGHUP ... 9
SIGHUP handling...................... 9
SIGINT ..o 9
signals handled by dicod............... 9
SIGQUIT ..o 9
SIGTERM ... 9
simple statements..................... 11
single query mode.................. ... 81
single-line comments 10
single-process, —-single-process
option, summary 40
SizZe ... i 67
SOTE vttt 44
soundex, a strategy 103
source-info, --source-info option,
5100000 00T 41
statement, block 13
statement, simple 11
statements, configuration file.......... 11
STATUS . .. e e 109

stderr, --stderr option, introduced... 9
stderr, --stderr option, summary ... 40

strat of struct dico_key............. 75
stratall module........................ 66

stratcl of struct dico_strategy..... 75

Concept Index

strategy........ ... ooooioiL 4, 35, 85
strategy functions, Guile 55
strategy functions, Scheme 55
strategy, default........................ 4
string, quoted 12
string, unquoted 12
substr module................ .. . L 66
substr, a strategy 104
suffix, a strategy 103
510N o] oRal=F-T-Eoy o3 ol 46
syslog, —--syslog option, summary ... 40
system information................. ... 23

T

terminating dicod..............., 9
termination procedure.................. 9
testing, modules....................... 78
text authentication database 18
tilde expansion............ 87
time formats, for ——time-format option

................................. 113
timing. 36
trace-grammar, —-trace-grammar option,

SUMIMALY « v vve et eeeee e e 42
trace-lex, ——-trace-lex option,

100000 00F:Y 42
transcript.................l 24, 88
transcript, —-—-transcript option,

100000 00F: 41
EriM-—WS. .ottt 44
two-layer model oL 5

U

unit testing ... 78
URL, authentication database 17
URL, using to query DICT server 82
usage, ——usage option, summary 40
L0 =T =Y o 14
user—db......... i 17
utf8_char_width.................... 126
utf8_iter_end p.................... 127
utf8_iter_first.................... 127
utf8_iter_isascii.................. 127
utf8_iter_next 127
utf8_iterator....................... 126
utf8_mbstr_to_norm_wc 128
utf8_mbstr_to_wcC................... 128
utf8_mbtowc............ 127
utf8_mbtowc_internmal............... 127

utf8_quote............ ...l 130

149

utf8_strcasecmp............... ...l 129
utf8_strlen.............., 126
utf8_strncasecmp................... 129
utf8_symcasecmpaan, 128
utf8_symecmp............a 128
utf8_tolower................... .. 130
utf8_toupper................... ... 130
utf8_wc_hash_string................ 130
utf8_wc_quote......... ..., 130
utf8_wc_strcasecmp................. 129
utf8_wc_strchr 129
utf8_wc_strchr_ci.................. 129
utf8_we_stremp ...l 129
utf8_we_strdup 130
utf8_wec_strlen..................... 126
utf8_wc_strlower................... 130
utf8_wc_strncasecmp................ 129
utf8_we_strncmp ...l 129
utf8_wec_strstr.......... 129
utf8_wc_strupper................... 130
utf8_wc_to_mbstr................... 128
utf8_wc_tolower 130
utf8_wc_toupper 130
utf8_wctomb............, 127
V
VEISION . o vttt ettt i 89
version, —-version option, summary

.................................. 40
virtual databases...................... 33
virtual functions, guile module 51
visibility, database 32
visibility-acl.................... ... 32
visible. ...t 30
W
warranty oo 89
webalizer................ 26
WnLho... 48
WHhOMEottt 48
wnsearchdir.......................... 48
word module.......................... 66
word of struct dico_key.............. 75
word on DicoSelectionKey............ 62
word, a strategy 104
wordnet..........coiiiiiiii 5
wordnet module....................... 47
WordNet, configuring 47
wordnet-dev 47

GNU Dico Manual

xlat_string................ 132
xlat_tab........coiiiiiiiii i 132
XLEV . o e 110
XVERSIONoii i 110

	Preface
	Overview
	Introduction to GNU Dico
	Building the Package
	Default Preprocessor
	Default Server
	Guile Support
	Python Support
	Other Configure Settings

	The dicod daemon.
	Daemon Operation Mode
	Inetd Operation Mode
	Configuration
	Configuration File Syntax
	Comments
	Pragmatic Comments
	Statements

	Server Settings
	Authentication
	Text Authentication Database
	LDAP Databases.

	SASL Authentication
	Access Control Lists
	Security Settings
	Logging and Debugging
	Access Log
	General Settings
	Server Capabilities
	Database Modules and Handlers
	Databases
	Database Visibility
	Virtual Databases

	Strategies and Default Searches
	Tuning
	Command Aliases
	Using Preprocessor to Improve the Configuration.

	Dicod Exit Codes
	Dicod Invocation
	Dicod Operation Mode
	Informational Options
	Modifier Options
	Preprocessor Control
	Debugging Options

	Modules
	Outline
	Dictorg
	Gcide
	idxgcide

	Wordnet
	Guile
	Virtual Functions
	Guile Initialization
	Guile API
	Dico Scheme Primitives
	Example Module

	Python
	Python Dictionary Class
	Dico Python Primitives
	The DicoSelectionKey class
	The DicoStrategy class

	Python Example

	Stratall
	Substr
	Word
	Nprefix
	metaphone2
	Pcre
	Ldap
	pam

	Dico Module Interface
	dico_database_module
	Strategies
	Search Key Structure
	Strategy Selectors

	Output
	Module Unit Testing

	Dico --- a client program.
	Single Query Mode
	Dico Command Line Options
	DICT URL

	Interactive Mode
	Server Commands
	Database and Strategy
	Informational Commands
	History Commands
	Pager
	Program Settings
	Session Transcript
	Other Commands
	Dico Command Summary

	Initialization File
	Autologin
	Dico invocation

	GCIDER
	How to Report a Bug
	Available Strategies
	Dictionary Server Protocol
	Initial Reply
	Standard Commands
	The DEFINE Command
	The MATCH Command
	The SHOW Command
	The OPTION Command
	The AUTH Command
	The CLIENT Command
	The STATUS Command
	The HELP Command
	The QUIT Command

	Extended Commands

	Time and Date Formats
	The Libdico Library
	Strategies
	argcv
	Lists
	Associative lists
	Diagnostics Functions
	Filter
	parseopt
	stream
	url
	UTF-8
	Character sizes
	Iterating over UTF-8 strings
	Conversions
	Comparing UTF-8 strings
	Character lookups
	Functions for converting UTF-8 characters
	Additional functions

	util
	xlat

	GNU Free Documentation License
	Concept Index

